Cargando…
Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms
Shallow landslides damage buildings and other infrastructure, disrupt agriculture practices, and can cause social upheaval and loss of life. As a result, many scientists study the phenomenon, and some of them have focused on producing landslide susceptibility maps that can be used by land-use manage...
Autores principales: | Nhu, Viet-Ha, Shirzadi, Ataollah, Shahabi, Himan, Singh, Sushant K., Al-Ansari, Nadhir, Clague, John J., Jaafari, Abolfazl, Chen, Wei, Miraki, Shaghayegh, Dou, Jie, Luu, Chinh, Górski, Krzysztof, Thai Pham, Binh, Nguyen, Huu Duy, Ahmad, Baharin Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7215797/ https://www.ncbi.nlm.nih.gov/pubmed/32316191 http://dx.doi.org/10.3390/ijerph17082749 |
Ejemplares similares
-
Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment
por: Nhu, Viet-Ha, et al.
Publicado: (2020) -
Novel GIS Based Machine Learning Algorithms for Shallow Landslide Susceptibility Mapping
por: Shirzadi, Ataollah, et al.
Publicado: (2018) -
A Robust Deep-Learning Model for Landslide Susceptibility Mapping: A Case Study of Kurdistan Province, Iran
por: Ghasemian, Bahareh, et al.
Publicado: (2022) -
Hybrid Integration Approach of Entropy with Logistic Regression and Support Vector Machine for Landslide Susceptibility Modeling
por: Zhang, Tingyu, et al.
Publicado: (2018) -
Monitoring and Assessment of Water Level Fluctuations of the Lake Urmia and Its Environmental Consequences Using Multitemporal Landsat 7 ETM(+) Images
por: Nhu, Viet-Ha, et al.
Publicado: (2020)