Cargando…

Experimental Investigation on Pool Boiling Heat Transfer Performance Using Tungsten Oxide WO(3) Nanomaterial-Based Water Nanofluids

This study aims to experimentally investigate the pool boiling heat transfer coefficient behavior using tungsten oxide-based deionized water nanofluids and comparing them to deionized water as conventional fluid. The influence of different dilute volumetric concentrations (0.005%–0.05% Vol.) and app...

Descripción completa

Detalles Bibliográficos
Autores principales: Kamel, Mohammed Saad, Lezsovits, Ferenc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7215816/
https://www.ncbi.nlm.nih.gov/pubmed/32325822
http://dx.doi.org/10.3390/ma13081922
Descripción
Sumario:This study aims to experimentally investigate the pool boiling heat transfer coefficient behavior using tungsten oxide-based deionized water nanofluids and comparing them to deionized water as conventional fluid. The influence of different dilute volumetric concentrations (0.005%–0.05% Vol.) and applied heat fluxes were examined to see the effect of these parameters on the pool boiling heat transfer performance using nanofluids from a typical horizontal heated copper tube at atmospheric pressure conditions. Results demonstrated that the pool boiling heat transfer coefficient (PBHTC) for both deionized water and nanofluids increased with increasing the applied heat flux. The higher PBHTC enhancement ratio was 6.7% for a volume concentration of 0.01% Vol. at a low heat flux compared to the deionized water case. Moreover, the PBHTC for nanofluids was degraded compared to the deionized water case, and the maximum reduction ratio was about 15% for a volume concentration of 0.05% Vol. relative to the baseline case. The reduction in PBHTC was attributed to the deposition of tungsten oxide nanoflakes on the heating surface during the boiling process, which led to a decrease in the density of the nucleation sites.