Cargando…
Signal Deconvolution and Noise Factor Analysis Based on a Combination of Time–Frequency Analysis and Probabilistic Sparse Matrix Factorization
Nuclear magnetic resonance (NMR) spectroscopy is commonly used to characterize molecular complexity because it produces informative atomic-resolution data on the chemical structure and molecular mobility of samples non-invasively by means of various acquisition parameters and pulse programs. However...
Autores principales: | Yamada, Shunji, Kurotani, Atsushi, Chikayama, Eisuke, Kikuchi, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7215856/ https://www.ncbi.nlm.nih.gov/pubmed/32340198 http://dx.doi.org/10.3390/ijms21082978 |
Ejemplares similares
-
Signal Deconvolution and Generative Topographic Mapping Regression for Solid-State NMR of Multi-Component Materials
por: Yamada, Shunji, et al.
Publicado: (2021) -
Materials informatics approach using domain modelling for exploring structure–property relationships of polymers
por: Hara, Koki, et al.
Publicado: (2022) -
InterSpin: Integrated Supportive Webtools for Low-
and High-Field NMR Analyses Toward Molecular Complexity
por: Yamada, Shunji, et al.
Publicado: (2019) -
Mathematical model for empirically optimizing large scale production of soluble protein domains
por: Chikayama, Eisuke, et al.
Publicado: (2010) -
Predicting the Effects of Drug Combinations Using Probabilistic Matrix Factorization
por: Nafshi, Ron, et al.
Publicado: (2021)