Cargando…

Impact of Preheating Temperature on the Separation of Whey Proteins When Combined with Chemical or Bipolar Membrane Electrochemical Acidification

Separation of α-lactalbumin and β-lactoglobulin improves their respective nutritional and functional properties. One strategy to improve their fractionation is to modify their pH and ionic strength to induce the selective aggregation and precipitation of one of the proteins of interest. Electrodialy...

Descripción completa

Detalles Bibliográficos
Autores principales: Aspirault, Claudie, Doyen, Alain, Bazinet, Laurent
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7215982/
https://www.ncbi.nlm.nih.gov/pubmed/32316425
http://dx.doi.org/10.3390/ijms21082792
Descripción
Sumario:Separation of α-lactalbumin and β-lactoglobulin improves their respective nutritional and functional properties. One strategy to improve their fractionation is to modify their pH and ionic strength to induce the selective aggregation and precipitation of one of the proteins of interest. Electrodialysis with bipolar membrane (EDBM) is a green process that simultaneously provides acidification and demineralization of a solution without adding any chemical compounds. This research presents the impact on whey proteins separation of different preheating temperatures (20, 50, 55 and 60 °C) combined with EDBM or chemical acidification of 10% whey protein isolate solutions. A β-lactoglobulin fraction at 81.8% purity was obtained in the precipitate after EDBM acidification and preheated at 60 °C, representing a recovery yield of 35.8%. In comparison, chemical acidification combined with a 60 °C preheating treatment provides a β-lactoglobulin fraction at 70.9% purity with a 11.6% recovery yield. The combination of EDBM acidification with a preheating treatment at 60 °C led to a better separation of the main whey proteins than chemical acidification.