Cargando…
Potential Implications of Interactions between Fe and S on Cereal Fe Biofortification
Iron (Fe) and sulfur (S) are two essential elements for plants, whose interrelation is indispensable for numerous physiological processes. In particular, Fe homeostasis in cereal species is profoundly connected to S nutrition because phytosiderophores, which are the metal chelators required for Fe u...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7216021/ https://www.ncbi.nlm.nih.gov/pubmed/32325653 http://dx.doi.org/10.3390/ijms21082827 |
Sumario: | Iron (Fe) and sulfur (S) are two essential elements for plants, whose interrelation is indispensable for numerous physiological processes. In particular, Fe homeostasis in cereal species is profoundly connected to S nutrition because phytosiderophores, which are the metal chelators required for Fe uptake and translocation in cereals, are derived from a S-containing amino acid, methionine. To date, various biotechnological cereal Fe biofortification strategies involving modulation of genes underlying Fe homeostasis have been reported. Meanwhile, the resultant Fe-biofortified crops have been minimally characterized from the perspective of interaction between Fe and S, in spite of the significance of the crosstalk between the two elements in cereals. Here, we intend to highlight the relevance of Fe and S interrelation in cereal Fe homeostasis and illustrate the potential implications it has to offer for future cereal Fe biofortification studies. |
---|