Cargando…

Exploring the Environmental Exposure to Methoxychlor, α-HCH and Endosulfan–sulfate Residues in Lake Naivasha (Kenya) Using a Multimedia Fate Modeling Approach

Distribution of pesticide residues in the environment and their transport to surface water bodies is one of the most important environmental challenges. Fate of pesticides in the complex environments, especially in aquatic phases such as lakes and rivers, is governed by the main properties of the co...

Descripción completa

Detalles Bibliográficos
Autores principales: Abbasi, Yasser, Mannaerts, Chris M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7216079/
https://www.ncbi.nlm.nih.gov/pubmed/32326528
http://dx.doi.org/10.3390/ijerph17082727
Descripción
Sumario:Distribution of pesticide residues in the environment and their transport to surface water bodies is one of the most important environmental challenges. Fate of pesticides in the complex environments, especially in aquatic phases such as lakes and rivers, is governed by the main properties of the contaminants and the environmental properties. In this study, a multimedia mass modeling approach using the Quantitative Water Air Sediment Interaction (QWASI) model was applied to explore the fate of organochlorine pesticide residues of methoxychlor, α-HCH and endosulfan–sulfate in the lake Naivasha (Kenya). The required physicochemical data of the pesticides such as molar mass, vapor pressure, air–water partitioning coefficient (K(AW)), solubility, and the Henry’s law constant were provided as the inputs of the model. The environment data also were collected using field measurements and taken from the literature. The sensitivity analysis of the model was applied using One At a Time (OAT) approach and calibrated using measured pesticide residues by passive sampling method. Finally, the calibrated model was used to estimate the fate and distribution of the pesticide residues in different media of the lake. The result of sensitivity analysis showed that the five most sensitive parameters were K(OC), logKow, half-life of the pollutants in water, half-life of the pollutants in sediment, and K(AW). The variations of outputs for the three studied pesticide residues against inputs were noticeably different. For example, the range of changes in the concentration of α-HCH residue was between 96% to 102%, while for methoxychlor and endosulfan-sulfate it was between 65% to 125%. The results of calibration demonstrated that the model was calibrated reasonably with the R(2) of 0.65 and RMSE of 16.4. It was found that methoxychlor had a mass fraction of almost 70% in water column and almost 30% of mass fraction in the sediment. In contrast, endosulfan–sulfate had highest most fraction in the water column (>99%) and just a negligible percentage in the sediment compartment. α-HCH also had the same situation like endosulfan–sulfate (e.g., 99% and 1% in water and sediment, respectively). Finally, it was concluded that the application of QWASI in combination with passive sampling technique allowed an insight to the fate process of the studied OCPs and helped actual concentration predictions. Therefore, the results of this study can also be used to perform risk assessment and investigate the environmental exposure of pesticide residues.