Cargando…
Clinical implementation of MRI-based organs-at-risk auto-segmentation with convolutional networks for prostate radiotherapy
BACKGROUND: Structure delineation is a necessary, yet time-consuming manual procedure in radiotherapy. Recently, convolutional neural networks have been proposed to speed-up and automatise this procedure, obtaining promising results. With the advent of magnetic resonance imaging (MRI)-guided radioth...
Autores principales: | Savenije, Mark H. F., Maspero, Matteo, Sikkes, Gonda G., van der Voort van Zyp, Jochem R. N., T. J. Kotte, Alexis N., Bol, Gijsbert H., T. van den Berg, Cornelis A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7216473/ https://www.ncbi.nlm.nih.gov/pubmed/32393280 http://dx.doi.org/10.1186/s13014-020-01528-0 |
Ejemplares similares
-
Evaluation of gold fiducial marker manual localisation for magnetic resonance-only prostate radiotherapy
por: Maspero, Matteo, et al.
Publicado: (2018) -
Fast contour propagation for MR‐guided prostate radiotherapy using convolutional neural networks
por: Eppenhof, K.A.J., et al.
Publicado: (2020) -
Comparison of Library of Plans with two daily adaptive strategies for whole bladder radiotherapy
por: den Boer, Duncan, et al.
Publicado: (2021) -
A single neural network for cone-beam computed tomography-based radiotherapy of head-and-neck, lung and breast cancer
por: Maspero, Matteo, et al.
Publicado: (2020) -
Clinical utility of convolutional neural networks for treatment planning in radiotherapy for spinal metastases
por: Arends, Sebastiaan R.S., et al.
Publicado: (2022)