Cargando…
kGCN: a graph-based deep learning framework for chemical structures
Deep learning is developing as an important technology to perform various tasks in cheminformatics. In particular, graph convolutional neural networks (GCNs) have been reported to perform well in many types of prediction tasks related to molecules. Although GCN exhibits considerable potential in var...
Autores principales: | Kojima, Ryosuke, Ishida, Shoichi, Ohta, Masateru, Iwata, Hiroaki, Honma, Teruki, Okuno, Yasushi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7216578/ https://www.ncbi.nlm.nih.gov/pubmed/33430993 http://dx.doi.org/10.1186/s13321-020-00435-6 |
Ejemplares similares
-
Selective Inhibitor
Design for Kinase Homologs Using
Multiobjective Monte Carlo Tree Search
por: Yoshizawa, Tatsuya, et al.
Publicado: (2022) -
CompRet: a comprehensive recommendation framework for chemical synthesis planning with algorithmic enumeration
por: Shibukawa, Ryosuke, et al.
Publicado: (2020) -
Surge: a fast open-source chemical graph generator
por: McKay, Brendan D., et al.
Publicado: (2022) -
An in silico Approach for Integrating Phenotypic and Target‐based Approaches in Drug Discovery
por: Iwata, Hiroaki, et al.
Publicado: (2019) -
AI-Driven Synthetic Route Design Incorporated with
Retrosynthesis Knowledge
por: Ishida, Shoichi, et al.
Publicado: (2022)