Cargando…

Longitudinal trajectories of Alzheimer’s ATN biomarkers in elderly persons without dementia

BACKGROUND: Models of Alzheimer’s disease (AD) pathophysiology posit that amyloidosis [A] precedes and accelerates tau pathology [T] that leads to neurodegeneration [N]. Besides this A-T-N sequence, other biomarker sequences are possible. This current work investigates and compares the longitudinal...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Meng-Shan, Ji, Xi, Li, Jie-Qiong, Xu, Wei, Wang, Hui-Fu, Tan, Chen-Chen, Dong, Qiang, Zuo, Chuan-Tao, Tan, Lan, Suckling, John, Yu, Jin-Tai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7216714/
https://www.ncbi.nlm.nih.gov/pubmed/32393375
http://dx.doi.org/10.1186/s13195-020-00621-6
Descripción
Sumario:BACKGROUND: Models of Alzheimer’s disease (AD) pathophysiology posit that amyloidosis [A] precedes and accelerates tau pathology [T] that leads to neurodegeneration [N]. Besides this A-T-N sequence, other biomarker sequences are possible. This current work investigates and compares the longitudinal trajectories of Alzheimer’s ATN biomarker profiles in non-demented elderly adults from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. METHODS: Based on the ATN classification system, 262 individuals were identified before dementia diagnosis and accompanied by baseline and follow-up data of ATN biomarkers (CSF Aβ42, p-tau, and FDG-PET). We recorded the conversion processes in ATN biomarkers during follow-up, then analyzed the possible longitudinal trajectories and estimated the conversion rate and temporal evolution of biomarker changes. To evaluate how biomarkers changed over time, we used linear mixed-effects models. RESULTS: During a 6–120-month follow-up period, there were four patterns of longitudinal changes in Alzheimer’s ATN biomarker profiles, from all negative to positive through the course of the disease. The most common pattern is that A pathology biomarker first emerges. As well as the classical A-T-N sequence, other “A-first,” “T-first,” and “N-first” biomarker pathways were found. The N-A-T sequence had the fastest rate of pathological progression (mean 65.00 months), followed by A-T-N (mean 67.07 months), T-A-N (mean 68.85 months), and A-N-T sequences (mean 98.14 months). CONCLUSIONS: Our current work presents a comprehensive analysis of longitudinal trajectories of Alzheimer’s ATN biomarkers in non-demented elderly adults. Stratifying disease into subtypes depending on the temporal evolution of biomarkers will benefit the early recognition and treatment.