Cargando…
Improved Acid Resistance of a Metal–Organic Cage Enables Cargo Release and Exchange between Hosts
The use of di(2‐pyridyl)ketone in subcomponent self‐assembly is introduced. When combined with a flexible triamine and zinc bis(trifluoromethanesulfonyl)imide, this ketone formed a new Zn(4)L(4) tetrahedron 1 bearing twelve uncoordinated pyridyl units around its metal‐ion vertices. The acid stabilit...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217015/ https://www.ncbi.nlm.nih.gov/pubmed/32073709 http://dx.doi.org/10.1002/anie.202001059 |
Sumario: | The use of di(2‐pyridyl)ketone in subcomponent self‐assembly is introduced. When combined with a flexible triamine and zinc bis(trifluoromethanesulfonyl)imide, this ketone formed a new Zn(4)L(4) tetrahedron 1 bearing twelve uncoordinated pyridyl units around its metal‐ion vertices. The acid stability of 1 was found to be greater than that of the analogous tetrahedron 2 built from 2‐formylpyridine. Intriguingly, the peripheral presence of additional pyridine rings in 1 resulted in distinct guest binding behavior from that of 2, affecting guest scope as well as binding affinities. The different stabilities and guest affinities of capsules 1 and 2 enabled the design of systems whereby different cargoes could be moved between cages using acid and base as chemical stimuli. |
---|