Cargando…
Construction and assessment of prediction rules for binary outcome in the presence of missing predictor data using multiple imputation and cross‐validation: Methodological approach and data‐based evaluation
We investigate calibration and assessment of predictive rules when missing values are present in the predictors. Our paper has two key objectives. The first is to investigate how the calibration of the prediction rule can be combined with use of multiple imputation to account for missing predictor o...
Autores principales: | Mertens, Bart J. A., Banzato, Erika, de Wreede, Liesbeth C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217034/ https://www.ncbi.nlm.nih.gov/pubmed/32052492 http://dx.doi.org/10.1002/bimj.201800289 |
Ejemplares similares
-
Efficiency of multiple imputation to test for association in the presence of missing data
por: Croiseau, Pascal, et al.
Publicado: (2007) -
Multiple Imputation for General Missing Data Patterns in the Presence of High-dimensional Data
por: Deng, Yi, et al.
Publicado: (2016) -
Flexible imputation of missing data
por: van Buuren, Stef
Publicado: (2018) -
Missing Data and Imputation Methods
por: Schober, Patrick, et al.
Publicado: (2020) -
Comparison of exclusion, imputation and modelling of missing binary outcome data in frequentist network meta-analysis
por: Spineli, Loukia M., et al.
Publicado: (2020)