Cargando…
Variance estimation when using propensity‐score matching with replacement with survival or time‐to‐event outcomes
Propensity‐score matching is a popular analytic method to estimate the effects of treatments when using observational data. Matching on the propensity score typically requires a pool of potential controls that is larger than the number of treated or exposed subjects. The most common approach to matc...
Autores principales: | Austin, Peter C., Cafri, Guy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217182/ https://www.ncbi.nlm.nih.gov/pubmed/32109319 http://dx.doi.org/10.1002/sim.8502 |
Ejemplares similares
-
Bootstrap vs asymptotic variance estimation when using propensity score weighting with continuous and binary outcomes
por: Austin, Peter C.
Publicado: (2022) -
Covariate-adjusted survival analyses in propensity-score matched samples: Imputing potential time-to-event outcomes
por: Austin, Peter C, et al.
Publicado: (2018) -
The use of bootstrapping when using propensity-score matching without replacement: a simulation study
por: Austin, Peter C, et al.
Publicado: (2014) -
Assessing the performance of the generalized propensity score for estimating the effect of quantitative or continuous exposures on survival or time-to-event outcomes
por: Austin, Peter C
Publicado: (2018) -
The performance of inverse probability of treatment weighting and full matching on the propensity score in the presence of model misspecification when estimating the effect of treatment on survival outcomes
por: Austin, Peter C, et al.
Publicado: (2015)