Cargando…
MiRNA‐137‐mediated modulation of mitochondrial dynamics regulates human neural stem cell fate
The role of miRNAs in determining human neural stem cell (NSC) fate remains elusive despite their high expression in the developing nervous system. In this study, we investigate the role of miR‐137, a brain‐enriched miRNA, in determining the fate of human induced pluripotent stem cells‐derived NSCs...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217206/ https://www.ncbi.nlm.nih.gov/pubmed/32012382 http://dx.doi.org/10.1002/stem.3155 |
_version_ | 1783532570252673024 |
---|---|
author | Channakkar, Asha S. Singh, Tanya Pattnaik, Bijay Gupta, Karnika Seth, Pankaj Adlakha, Yogita K. |
author_facet | Channakkar, Asha S. Singh, Tanya Pattnaik, Bijay Gupta, Karnika Seth, Pankaj Adlakha, Yogita K. |
author_sort | Channakkar, Asha S. |
collection | PubMed |
description | The role of miRNAs in determining human neural stem cell (NSC) fate remains elusive despite their high expression in the developing nervous system. In this study, we investigate the role of miR‐137, a brain‐enriched miRNA, in determining the fate of human induced pluripotent stem cells‐derived NSCs (hiNSCs). We show that ectopic expression of miR‐137 in hiNSCs reduces proliferation and accelerates neuronal differentiation and migration. TargetScan and MicroT‐CDS predict myocyte enhancer factor‐2A (MEF2A), a transcription factor that regulates peroxisome proliferator‐activated receptor‐gamma coactivator (PGC1α) transcription, as a target of miR‐137. Using a reporter assay, we validate MEF2A as a downstream target of miR‐137. Our results indicate that reduced levels of MEF2A reduce the transcription of PGC1α, which in turn impacts mitochondrial dynamics. Notably, miR‐137 accelerates mitochondrial biogenesis in a PGC1α independent manner by upregulating nuclear factor erythroid 2 (NFE2)‐related factor 2 (NRF2) and transcription factor A of mitochondria (TFAM). In addition, miR‐137 modulates mitochondrial dynamics by inducing mitochondrial fusion and fission events, resulting in increased mitochondrial content and activation of oxidative phosphorylation (OXPHOS) and oxygen consumption rate. Pluripotency transcription factors OCT4 and SOX2 are known to have binding sites in the promoter region of miR‐137 gene. Ectopic expression of miR‐137 elevates the expression levels of OCT4 and SOX2 in hiNSCs which establishes a feed‐forward self‐regulatory loop between miR‐137 and OCT4/SOX2. Our study provides novel molecular insights into NSC fate determination by miR‐137. |
format | Online Article Text |
id | pubmed-7217206 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-72172062020-05-13 MiRNA‐137‐mediated modulation of mitochondrial dynamics regulates human neural stem cell fate Channakkar, Asha S. Singh, Tanya Pattnaik, Bijay Gupta, Karnika Seth, Pankaj Adlakha, Yogita K. Stem Cells Tissue‐specific Stem Cells The role of miRNAs in determining human neural stem cell (NSC) fate remains elusive despite their high expression in the developing nervous system. In this study, we investigate the role of miR‐137, a brain‐enriched miRNA, in determining the fate of human induced pluripotent stem cells‐derived NSCs (hiNSCs). We show that ectopic expression of miR‐137 in hiNSCs reduces proliferation and accelerates neuronal differentiation and migration. TargetScan and MicroT‐CDS predict myocyte enhancer factor‐2A (MEF2A), a transcription factor that regulates peroxisome proliferator‐activated receptor‐gamma coactivator (PGC1α) transcription, as a target of miR‐137. Using a reporter assay, we validate MEF2A as a downstream target of miR‐137. Our results indicate that reduced levels of MEF2A reduce the transcription of PGC1α, which in turn impacts mitochondrial dynamics. Notably, miR‐137 accelerates mitochondrial biogenesis in a PGC1α independent manner by upregulating nuclear factor erythroid 2 (NFE2)‐related factor 2 (NRF2) and transcription factor A of mitochondria (TFAM). In addition, miR‐137 modulates mitochondrial dynamics by inducing mitochondrial fusion and fission events, resulting in increased mitochondrial content and activation of oxidative phosphorylation (OXPHOS) and oxygen consumption rate. Pluripotency transcription factors OCT4 and SOX2 are known to have binding sites in the promoter region of miR‐137 gene. Ectopic expression of miR‐137 elevates the expression levels of OCT4 and SOX2 in hiNSCs which establishes a feed‐forward self‐regulatory loop between miR‐137 and OCT4/SOX2. Our study provides novel molecular insights into NSC fate determination by miR‐137. John Wiley & Sons, Inc. 2020-02-08 2020-05 /pmc/articles/PMC7217206/ /pubmed/32012382 http://dx.doi.org/10.1002/stem.3155 Text en ©2020 The Authors. stem cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press 2020 This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Tissue‐specific Stem Cells Channakkar, Asha S. Singh, Tanya Pattnaik, Bijay Gupta, Karnika Seth, Pankaj Adlakha, Yogita K. MiRNA‐137‐mediated modulation of mitochondrial dynamics regulates human neural stem cell fate |
title | MiRNA‐137‐mediated modulation of mitochondrial dynamics regulates human neural stem cell fate |
title_full | MiRNA‐137‐mediated modulation of mitochondrial dynamics regulates human neural stem cell fate |
title_fullStr | MiRNA‐137‐mediated modulation of mitochondrial dynamics regulates human neural stem cell fate |
title_full_unstemmed | MiRNA‐137‐mediated modulation of mitochondrial dynamics regulates human neural stem cell fate |
title_short | MiRNA‐137‐mediated modulation of mitochondrial dynamics regulates human neural stem cell fate |
title_sort | mirna‐137‐mediated modulation of mitochondrial dynamics regulates human neural stem cell fate |
topic | Tissue‐specific Stem Cells |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217206/ https://www.ncbi.nlm.nih.gov/pubmed/32012382 http://dx.doi.org/10.1002/stem.3155 |
work_keys_str_mv | AT channakkarashas mirna137mediatedmodulationofmitochondrialdynamicsregulateshumanneuralstemcellfate AT singhtanya mirna137mediatedmodulationofmitochondrialdynamicsregulateshumanneuralstemcellfate AT pattnaikbijay mirna137mediatedmodulationofmitochondrialdynamicsregulateshumanneuralstemcellfate AT guptakarnika mirna137mediatedmodulationofmitochondrialdynamicsregulateshumanneuralstemcellfate AT sethpankaj mirna137mediatedmodulationofmitochondrialdynamicsregulateshumanneuralstemcellfate AT adlakhayogitak mirna137mediatedmodulationofmitochondrialdynamicsregulateshumanneuralstemcellfate |