Cargando…
Using case-level context to classify cancer pathology reports
Individual electronic health records (EHRs) and clinical reports are often part of a larger sequence—for example, a single patient may generate multiple reports over the trajectory of a disease. In applications such as cancer pathology reports, it is necessary not only to extract information from in...
Autores principales: | Gao, Shang, Alawad, Mohammed, Schaefferkoetter, Noah, Penberthy, Lynne, Wu, Xiao-Cheng, Durbin, Eric B., Coyle, Linda, Ramanathan, Arvind, Tourassi, Georgia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217446/ https://www.ncbi.nlm.nih.gov/pubmed/32396579 http://dx.doi.org/10.1371/journal.pone.0232840 |
Ejemplares similares
-
Deep active learning for classifying cancer pathology reports
por: De Angeli, Kevin, et al.
Publicado: (2021) -
Automatic extraction of cancer registry reportable information from free-text pathology reports using multitask convolutional neural networks
por: Alawad, Mohammed, et al.
Publicado: (2019) -
Using ensembles and distillation to optimize the deployment of deep learning models for the classification of electronic cancer pathology reports
por: De Angeli, Kevin, et al.
Publicado: (2022) -
A Keyword-Enhanced Approach to Handle Class Imbalance in Clinical
Text Classification
por: Blanchard, Andrew E., et al.
Publicado: (2022) -
Automatic information extraction from childhood cancer pathology reports
por: Yoon, Hong-Jun, et al.
Publicado: (2022)