Cargando…

Limitations of discrete-time approaches to continuous-time contagion dynamics

Continuous-time Markov process models of contagions are widely studied, not least because of their utility in predicting the evolution of real-world contagions and in formulating control measures. It is often the case, however, that discrete-time approaches are employed to analyze such models or to...

Descripción completa

Detalles Bibliográficos
Autores principales: Fennell, Peter G., Melnik, Sergey, Gleeson, James P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Physical Society 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217503/
https://www.ncbi.nlm.nih.gov/pubmed/27967171
http://dx.doi.org/10.1103/PhysRevE.94.052125
_version_ 1783532612434788352
author Fennell, Peter G.
Melnik, Sergey
Gleeson, James P.
author_facet Fennell, Peter G.
Melnik, Sergey
Gleeson, James P.
author_sort Fennell, Peter G.
collection PubMed
description Continuous-time Markov process models of contagions are widely studied, not least because of their utility in predicting the evolution of real-world contagions and in formulating control measures. It is often the case, however, that discrete-time approaches are employed to analyze such models or to simulate them numerically. In such cases, time is discretized into uniform steps and transition rates between states are replaced by transition probabilities. In this paper, we illustrate potential limitations to this approach. We show how discretizing time leads to a restriction on the values of the model parameters that can accurately be studied. We examine numerical simulation schemes employed in the literature, showing how synchronous-type updating schemes can bias discrete-time formalisms when compared against continuous-time formalisms. Event-based simulations, such as the Gillespie algorithm, are proposed as optimal simulation schemes both in terms of replicating the continuous-time process and computational speed. Finally, we show how discretizing time can affect the value of the epidemic threshold for large values of the infection rate and the recovery rate, even if the ratio between the former and the latter is small.
format Online
Article
Text
id pubmed-7217503
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher American Physical Society
record_format MEDLINE/PubMed
spelling pubmed-72175032020-05-13 Limitations of discrete-time approaches to continuous-time contagion dynamics Fennell, Peter G. Melnik, Sergey Gleeson, James P. Phys Rev E Articles Continuous-time Markov process models of contagions are widely studied, not least because of their utility in predicting the evolution of real-world contagions and in formulating control measures. It is often the case, however, that discrete-time approaches are employed to analyze such models or to simulate them numerically. In such cases, time is discretized into uniform steps and transition rates between states are replaced by transition probabilities. In this paper, we illustrate potential limitations to this approach. We show how discretizing time leads to a restriction on the values of the model parameters that can accurately be studied. We examine numerical simulation schemes employed in the literature, showing how synchronous-type updating schemes can bias discrete-time formalisms when compared against continuous-time formalisms. Event-based simulations, such as the Gillespie algorithm, are proposed as optimal simulation schemes both in terms of replicating the continuous-time process and computational speed. Finally, we show how discretizing time can affect the value of the epidemic threshold for large values of the infection rate and the recovery rate, even if the ratio between the former and the latter is small. American Physical Society 2016-11 2016-11-16 /pmc/articles/PMC7217503/ /pubmed/27967171 http://dx.doi.org/10.1103/PhysRevE.94.052125 Text en ©2016 American Physical Society This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source.
spellingShingle Articles
Fennell, Peter G.
Melnik, Sergey
Gleeson, James P.
Limitations of discrete-time approaches to continuous-time contagion dynamics
title Limitations of discrete-time approaches to continuous-time contagion dynamics
title_full Limitations of discrete-time approaches to continuous-time contagion dynamics
title_fullStr Limitations of discrete-time approaches to continuous-time contagion dynamics
title_full_unstemmed Limitations of discrete-time approaches to continuous-time contagion dynamics
title_short Limitations of discrete-time approaches to continuous-time contagion dynamics
title_sort limitations of discrete-time approaches to continuous-time contagion dynamics
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217503/
https://www.ncbi.nlm.nih.gov/pubmed/27967171
http://dx.doi.org/10.1103/PhysRevE.94.052125
work_keys_str_mv AT fennellpeterg limitationsofdiscretetimeapproachestocontinuoustimecontagiondynamics
AT melniksergey limitationsofdiscretetimeapproachestocontinuoustimecontagiondynamics
AT gleesonjamesp limitationsofdiscretetimeapproachestocontinuoustimecontagiondynamics