Cargando…

Epidemic spreading in random rectangular networks

The use of network theory to model disease propagation on populations introduces important elements of reality to the classical epidemiological models. The use of random geometric graphs (RGGs) is one of such network models that allows for the consideration of spatial properties on disease propagati...

Descripción completa

Detalles Bibliográficos
Autores principales: Estrada, Ernesto, Meloni, Sandro, Sheerin, Matthew, Moreno, Yamir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Physical Society 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217508/
https://www.ncbi.nlm.nih.gov/pubmed/27967075
http://dx.doi.org/10.1103/PhysRevE.94.052316
Descripción
Sumario:The use of network theory to model disease propagation on populations introduces important elements of reality to the classical epidemiological models. The use of random geometric graphs (RGGs) is one of such network models that allows for the consideration of spatial properties on disease propagation. In certain real-world scenarios—like in the analysis of a disease propagating through plants—the shape of the plots and fields where the host of the disease is located may play a fundamental role in the propagation dynamics. Here we consider a generalization of the RGG to account for the variation of the shape of the plots or fields where the hosts of a disease are allocated. We consider a disease propagation taking place on the nodes of a random rectangular graph and we consider a lower bound for the epidemic threshold of a susceptible-infected-susceptible model or a susceptible-infected-recovered model on these networks. Using extensive numerical simulations and based on our analytical results we conclude that (ceteris paribus) the elongation of the plot or field in which the nodes are distributed makes the network more resilient to the propagation of a disease due to the fact that the epidemic threshold increases with the elongation of the rectangle. These results agree with accumulated empirical evidence and simulation results about the propagation of diseases on plants in plots or fields of the same area and different shapes.