Cargando…
Griffiths phase on hierarchical modular networks with small-world edges
The Griffiths phase has been proposed to induce a stretched critical regime that facilitates self-organizing of brain networks for optimal function. This phase stems from the intrinsic structural heterogeneity of brain networks, i.e., the hierarchical modular structure. In this work, the Griffiths p...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Physical Society
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217519/ https://www.ncbi.nlm.nih.gov/pubmed/28415342 http://dx.doi.org/10.1103/PhysRevE.95.032306 |
Sumario: | The Griffiths phase has been proposed to induce a stretched critical regime that facilitates self-organizing of brain networks for optimal function. This phase stems from the intrinsic structural heterogeneity of brain networks, i.e., the hierarchical modular structure. In this work, the Griffiths phase is studied in modified hierarchical networks with small-world connections based on the 3-regular Hanoi network. Through extensive simulations, the hierarchical level-dependent inter-module wiring probabilities are identified to determine the emergence of the Griffiths phase. Numerical results and the complementary spectral analysis of the relevant networks can be helpful for a deeper understanding of the essential structural characteristics of finite-dimensional networks to support the Griffiths phase. |
---|