Cargando…
Close and ordinary social contacts: How important are they in promoting large-scale contagion?
An outstanding problem of interdisciplinary interest is to understand quantitatively the role of social contacts in contagion dynamics. In general, there are two types of contacts: close ones among friends, colleagues and family members, etc., and ordinary contacts from encounters with strangers. Ty...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Physical Society
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217557/ http://dx.doi.org/10.1103/PhysRevE.98.052311 |
_version_ | 1783532624595124224 |
---|---|
author | Cui, Peng-Bi Wang, Wei Cai, Shi-Min Zhou, Tao Lai, Ying-Cheng |
author_facet | Cui, Peng-Bi Wang, Wei Cai, Shi-Min Zhou, Tao Lai, Ying-Cheng |
author_sort | Cui, Peng-Bi |
collection | PubMed |
description | An outstanding problem of interdisciplinary interest is to understand quantitatively the role of social contacts in contagion dynamics. In general, there are two types of contacts: close ones among friends, colleagues and family members, etc., and ordinary contacts from encounters with strangers. Typically, social reinforcement occurs for close contacts. Taking into account both types of contacts, we develop a contact-based model for social contagion. We find that, associated with the spreading dynamics, for random networks there is coexistence of continuous and discontinuous phase transitions, but for heterogeneous networks the transition is continuous. We also find that ordinary contacts play a crucial role in promoting large-scale spreading, and the number of close contacts determines not only the nature of the phase transitions but also the value of the outbreak threshold in random networks. For heterogeneous networks from the real world, the abundance of close contacts affects the epidemic threshold, while its role in facilitating the spreading depends on the adoption threshold assigned to it. We uncover two striking phenomena. First, a strong interplay between ordinary and close contacts is necessary for generating prevalent spreading. In fact, only when there are propagation paths of reasonable length which involve both close and ordinary contacts are large-scale outbreaks of social contagions possible. Second, abundant close contacts in heterogeneous networks promote both outbreak and spreading of the contagion through the transmission channels among the hubs, when both values of the threshold and transmission rate among ordinary contacts are small. We develop a theoretical framework to obtain an analytic understanding of the main findings on random networks, with support from extensive numerical computations. Overall, ordinary contacts facilitate spreading over the entire network, while close contacts determine the way by which outbreaks occur, i.e., through a second- or first-order phase transition. These results provide quantitative insights into how certain social behaviors can emerge and become prevalent, which has potential implications not only to social science but also to economics and political science. |
format | Online Article Text |
id | pubmed-7217557 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Physical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-72175572020-05-13 Close and ordinary social contacts: How important are they in promoting large-scale contagion? Cui, Peng-Bi Wang, Wei Cai, Shi-Min Zhou, Tao Lai, Ying-Cheng Phys Rev E Articles An outstanding problem of interdisciplinary interest is to understand quantitatively the role of social contacts in contagion dynamics. In general, there are two types of contacts: close ones among friends, colleagues and family members, etc., and ordinary contacts from encounters with strangers. Typically, social reinforcement occurs for close contacts. Taking into account both types of contacts, we develop a contact-based model for social contagion. We find that, associated with the spreading dynamics, for random networks there is coexistence of continuous and discontinuous phase transitions, but for heterogeneous networks the transition is continuous. We also find that ordinary contacts play a crucial role in promoting large-scale spreading, and the number of close contacts determines not only the nature of the phase transitions but also the value of the outbreak threshold in random networks. For heterogeneous networks from the real world, the abundance of close contacts affects the epidemic threshold, while its role in facilitating the spreading depends on the adoption threshold assigned to it. We uncover two striking phenomena. First, a strong interplay between ordinary and close contacts is necessary for generating prevalent spreading. In fact, only when there are propagation paths of reasonable length which involve both close and ordinary contacts are large-scale outbreaks of social contagions possible. Second, abundant close contacts in heterogeneous networks promote both outbreak and spreading of the contagion through the transmission channels among the hubs, when both values of the threshold and transmission rate among ordinary contacts are small. We develop a theoretical framework to obtain an analytic understanding of the main findings on random networks, with support from extensive numerical computations. Overall, ordinary contacts facilitate spreading over the entire network, while close contacts determine the way by which outbreaks occur, i.e., through a second- or first-order phase transition. These results provide quantitative insights into how certain social behaviors can emerge and become prevalent, which has potential implications not only to social science but also to economics and political science. American Physical Society 2018-11-28 2018-11 /pmc/articles/PMC7217557/ http://dx.doi.org/10.1103/PhysRevE.98.052311 Text en ©2018 American Physical Society This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. |
spellingShingle | Articles Cui, Peng-Bi Wang, Wei Cai, Shi-Min Zhou, Tao Lai, Ying-Cheng Close and ordinary social contacts: How important are they in promoting large-scale contagion? |
title | Close and ordinary social contacts: How important are they in promoting large-scale contagion? |
title_full | Close and ordinary social contacts: How important are they in promoting large-scale contagion? |
title_fullStr | Close and ordinary social contacts: How important are they in promoting large-scale contagion? |
title_full_unstemmed | Close and ordinary social contacts: How important are they in promoting large-scale contagion? |
title_short | Close and ordinary social contacts: How important are they in promoting large-scale contagion? |
title_sort | close and ordinary social contacts: how important are they in promoting large-scale contagion? |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217557/ http://dx.doi.org/10.1103/PhysRevE.98.052311 |
work_keys_str_mv | AT cuipengbi closeandordinarysocialcontactshowimportantaretheyinpromotinglargescalecontagion AT wangwei closeandordinarysocialcontactshowimportantaretheyinpromotinglargescalecontagion AT caishimin closeandordinarysocialcontactshowimportantaretheyinpromotinglargescalecontagion AT zhoutao closeandordinarysocialcontactshowimportantaretheyinpromotinglargescalecontagion AT laiyingcheng closeandordinarysocialcontactshowimportantaretheyinpromotinglargescalecontagion |