Cargando…
A novel stratification framework for predicting outcome in patients with prostate cancer
BACKGROUND: Unsupervised learning methods, such as Hierarchical Cluster Analysis, are commonly used for the analysis of genomic platform data. Unfortunately, such approaches ignore the well-documented heterogeneous composition of prostate cancer samples. Our aim is to use more sophisticated analytic...
Autores principales: | Luca, Bogdan-Alexandru, Moulton, Vincent, Ellis, Christopher, Edwards, Dylan R., Campbell, Colin, Cooper, Rosalin A., Clark, Jeremy, Brewer, Daniel S., Cooper, Colin S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217762/ https://www.ncbi.nlm.nih.gov/pubmed/32203215 http://dx.doi.org/10.1038/s41416-020-0799-5 |
Ejemplares similares
-
Convergence of Prognostic Gene Signatures Suggests Underlying Mechanisms of Human Prostate Cancer Progression
por: Luca, Bogdan-Alexandru, et al.
Publicado: (2020) -
Combining Molecular Subtypes with Multivariable Clinical Models Has the Potential to Improve Prediction of Treatment Outcomes in Prostate Cancer at Diagnosis
por: Wardale, Lewis, et al.
Publicado: (2022) -
Integration of Urinary EN2 Protein & Cell-Free RNA Data in the Development of a Multivariable Risk Model for the Detection of Prostate Cancer Prior to Biopsy
por: Connell, Shea P., et al.
Publicado: (2021) -
Novel concepts for risk stratification in prostate cancer
por: Patel, Keval M, et al.
Publicado: (2016) -
Gene-Transcript Expression in Urine Supernatant and Urine Cell-Sediment Are Different but Equally Useful for Detecting Prostate Cancer
por: Yazbek Hanna, Marcelino, et al.
Publicado: (2023)