Cargando…
Skeletal muscle in healthy humans exhibits a day-night rhythm in lipid metabolism
OBJECTIVE: Human energy metabolism is under the regulation of the molecular circadian clock; we recently reported that mitochondrial respiration displays a day-night rhythm under study conditions that are similar to real life. Mitochondria are interconnected with lipid droplets, which are of importa...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217992/ https://www.ncbi.nlm.nih.gov/pubmed/32272236 http://dx.doi.org/10.1016/j.molmet.2020.100989 |
_version_ | 1783532702989811712 |
---|---|
author | Held, Ntsiki M. Wefers, Jakob van Weeghel, Michel Daemen, Sabine Hansen, Jan Vaz, Frédéric M. van Moorsel, Dirk Hesselink, Matthijs K.C. Houtkooper, Riekelt H. Schrauwen, Patrick |
author_facet | Held, Ntsiki M. Wefers, Jakob van Weeghel, Michel Daemen, Sabine Hansen, Jan Vaz, Frédéric M. van Moorsel, Dirk Hesselink, Matthijs K.C. Houtkooper, Riekelt H. Schrauwen, Patrick |
author_sort | Held, Ntsiki M. |
collection | PubMed |
description | OBJECTIVE: Human energy metabolism is under the regulation of the molecular circadian clock; we recently reported that mitochondrial respiration displays a day-night rhythm under study conditions that are similar to real life. Mitochondria are interconnected with lipid droplets, which are of importance in fuel utilization and play a role in muscle insulin sensitivity. Here, we investigated if skeletal muscle lipid content and composition also display day-night rhythmicity in healthy, lean volunteers. METHODS: Skeletal muscle biopsies were obtained from 12 healthy lean male volunteers every 5 h over a 24 h period. Volunteers were provided with standardized meals, and biopsies were taken 4.5 h after each last meal. Lipid droplet size and number were investigated by confocal microscopy. Additionally, the muscle lipidome was assessed using UPLC/HRMS-based semi-targeted lipidomics. RESULTS: Confocal microscopy revealed diurnal differences in intramyocellular lipid content (P < 0.05) and lipid droplet size in oxidative type 1 muscle fibers (P < 0.01). Lipidomics analysis revealed that 13% of all detected lipids displayed significant day-night rhythmicity. The most rhythmic lipid species were glycerophospholipids and diacylglycerols (DAG), with the latter being the largest fraction (>50% of all rhythmic species). DAG levels showed a day-night pattern with a trough at 1 PM and a peak at 4 AM. CONCLUSIONS: Using two distinct methods, our findings show that myocellular lipid content and whole muscle lipid composition vary across the day-night cycle under normal living conditions. In particular, day-night rhythmicity was present in over half of the DAG lipid species. Future studies are needed to investigate whether rhythmicity in DAG is functionally related to insulin sensitivity and how this might be altered in prediabetes. |
format | Online Article Text |
id | pubmed-7217992 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-72179922020-05-15 Skeletal muscle in healthy humans exhibits a day-night rhythm in lipid metabolism Held, Ntsiki M. Wefers, Jakob van Weeghel, Michel Daemen, Sabine Hansen, Jan Vaz, Frédéric M. van Moorsel, Dirk Hesselink, Matthijs K.C. Houtkooper, Riekelt H. Schrauwen, Patrick Mol Metab Original Article OBJECTIVE: Human energy metabolism is under the regulation of the molecular circadian clock; we recently reported that mitochondrial respiration displays a day-night rhythm under study conditions that are similar to real life. Mitochondria are interconnected with lipid droplets, which are of importance in fuel utilization and play a role in muscle insulin sensitivity. Here, we investigated if skeletal muscle lipid content and composition also display day-night rhythmicity in healthy, lean volunteers. METHODS: Skeletal muscle biopsies were obtained from 12 healthy lean male volunteers every 5 h over a 24 h period. Volunteers were provided with standardized meals, and biopsies were taken 4.5 h after each last meal. Lipid droplet size and number were investigated by confocal microscopy. Additionally, the muscle lipidome was assessed using UPLC/HRMS-based semi-targeted lipidomics. RESULTS: Confocal microscopy revealed diurnal differences in intramyocellular lipid content (P < 0.05) and lipid droplet size in oxidative type 1 muscle fibers (P < 0.01). Lipidomics analysis revealed that 13% of all detected lipids displayed significant day-night rhythmicity. The most rhythmic lipid species were glycerophospholipids and diacylglycerols (DAG), with the latter being the largest fraction (>50% of all rhythmic species). DAG levels showed a day-night pattern with a trough at 1 PM and a peak at 4 AM. CONCLUSIONS: Using two distinct methods, our findings show that myocellular lipid content and whole muscle lipid composition vary across the day-night cycle under normal living conditions. In particular, day-night rhythmicity was present in over half of the DAG lipid species. Future studies are needed to investigate whether rhythmicity in DAG is functionally related to insulin sensitivity and how this might be altered in prediabetes. Elsevier 2020-04-06 /pmc/articles/PMC7217992/ /pubmed/32272236 http://dx.doi.org/10.1016/j.molmet.2020.100989 Text en © 2020 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Original Article Held, Ntsiki M. Wefers, Jakob van Weeghel, Michel Daemen, Sabine Hansen, Jan Vaz, Frédéric M. van Moorsel, Dirk Hesselink, Matthijs K.C. Houtkooper, Riekelt H. Schrauwen, Patrick Skeletal muscle in healthy humans exhibits a day-night rhythm in lipid metabolism |
title | Skeletal muscle in healthy humans exhibits a day-night rhythm in lipid metabolism |
title_full | Skeletal muscle in healthy humans exhibits a day-night rhythm in lipid metabolism |
title_fullStr | Skeletal muscle in healthy humans exhibits a day-night rhythm in lipid metabolism |
title_full_unstemmed | Skeletal muscle in healthy humans exhibits a day-night rhythm in lipid metabolism |
title_short | Skeletal muscle in healthy humans exhibits a day-night rhythm in lipid metabolism |
title_sort | skeletal muscle in healthy humans exhibits a day-night rhythm in lipid metabolism |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217992/ https://www.ncbi.nlm.nih.gov/pubmed/32272236 http://dx.doi.org/10.1016/j.molmet.2020.100989 |
work_keys_str_mv | AT heldntsikim skeletalmuscleinhealthyhumansexhibitsadaynightrhythminlipidmetabolism AT wefersjakob skeletalmuscleinhealthyhumansexhibitsadaynightrhythminlipidmetabolism AT vanweeghelmichel skeletalmuscleinhealthyhumansexhibitsadaynightrhythminlipidmetabolism AT daemensabine skeletalmuscleinhealthyhumansexhibitsadaynightrhythminlipidmetabolism AT hansenjan skeletalmuscleinhealthyhumansexhibitsadaynightrhythminlipidmetabolism AT vazfredericm skeletalmuscleinhealthyhumansexhibitsadaynightrhythminlipidmetabolism AT vanmoorseldirk skeletalmuscleinhealthyhumansexhibitsadaynightrhythminlipidmetabolism AT hesselinkmatthijskc skeletalmuscleinhealthyhumansexhibitsadaynightrhythminlipidmetabolism AT houtkooperriekelth skeletalmuscleinhealthyhumansexhibitsadaynightrhythminlipidmetabolism AT schrauwenpatrick skeletalmuscleinhealthyhumansexhibitsadaynightrhythminlipidmetabolism |