Cargando…
Effects of Label Noise on Deep Learning-Based Skin Cancer Classification
Recent studies have shown that deep learning is capable of classifying dermatoscopic images at least as well as dermatologists. However, many studies in skin cancer classification utilize non-biopsy-verified training images. This imperfect ground truth introduces a systematic error, but the effects...
Autores principales: | Hekler, Achim, Kather, Jakob N., Krieghoff-Henning, Eva, Utikal, Jochen S., Meier, Friedegund, Gellrich, Frank F., Upmeier zu Belzen, Julius, French, Lars, Schlager, Justin G., Ghoreschi, Kamran, Wilhelm, Tabea, Kutzner, Heinz, Berking, Carola, Heppt, Markus V., Haferkamp, Sebastian, Sondermann, Wiebke, Schadendorf, Dirk, Schilling, Bastian, Izar, Benjamin, Maron, Roman, Schmitt, Max, Fröhling, Stefan, Lipka, Daniel B., Brinker, Titus J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218064/ https://www.ncbi.nlm.nih.gov/pubmed/32435646 http://dx.doi.org/10.3389/fmed.2020.00177 |
Ejemplares similares
-
Integrating Patient Data Into Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review
por: Höhn, Julia, et al.
Publicado: (2021) -
Artificial Intelligence in Skin Cancer Diagnostics: The Patients' Perspective
por: Jutzi, Tanja B., et al.
Publicado: (2020) -
Artificial Intelligence and Its Effect on Dermatologists’ Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study
por: Maron, Roman C, et al.
Publicado: (2020) -
Reducing the Impact of Confounding Factors on Skin Cancer Classification via Image Segmentation: Technical Model Study
por: Maron, Roman C, et al.
Publicado: (2021) -
Hidden Variables in Deep Learning Digital Pathology and Their Potential to Cause Batch Effects: Prediction Model Study
por: Schmitt, Max, et al.
Publicado: (2021)