Cargando…
Combining QTL Analysis and Genomic Predictions for Four Durum Wheat Populations Under Drought Conditions
Durum wheat is an important crop for the human diet and its consumption is gaining popularity. In order to ensure that durum wheat production maintains the pace with the increase in demand, it is necessary to raise productivity by approximately 1.5% per year. To deliver this level of annual genetic...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218065/ https://www.ncbi.nlm.nih.gov/pubmed/32435259 http://dx.doi.org/10.3389/fgene.2020.00316 |
_version_ | 1783532718803386368 |
---|---|
author | Zaïm, Meryem Kabbaj, Hafssa Kehel, Zakaria Gorjanc, Gregor Filali-Maltouf, Abdelkarim Belkadi, Bouchra Nachit, Miloudi M. Bassi, Filippo M. |
author_facet | Zaïm, Meryem Kabbaj, Hafssa Kehel, Zakaria Gorjanc, Gregor Filali-Maltouf, Abdelkarim Belkadi, Bouchra Nachit, Miloudi M. Bassi, Filippo M. |
author_sort | Zaïm, Meryem |
collection | PubMed |
description | Durum wheat is an important crop for the human diet and its consumption is gaining popularity. In order to ensure that durum wheat production maintains the pace with the increase in demand, it is necessary to raise productivity by approximately 1.5% per year. To deliver this level of annual genetic gain the incorporation of molecular strategies has been proposed as a key solution. Here, four RILs populations were used to conduct QTL discovery for grain yield (GY) and 1,000 kernel weight (TKW). A total of 576 individuals were sown at three locations in Morocco and one in Lebanon. These individuals were genotyped by sequencing with 3,202 high-confidence polymorphic markers, to derive a consensus genetic map of 2,705.7 cM, which was used to impute any missing data. Six QTLs were found to be associated with GY and independent from flowering time on chromosomes 2B, 4A, 5B, 7A and 7B, explaining a phenotypic variation (PV) ranging from 4.3 to 13.4%. The same populations were used to train genomic prediction models incorporating the relationship matrix, the genotype by environment interaction, and marker by environment interaction, to reveal significant advantages for models incorporating the marker effect. Using training populations (TP) in full sibs relationships with the validation population (VP) was shown to be the only effective strategy, with accuracies reaching 0.35–0.47 for GY. Reducing the number of markers to 10% of the whole set, and the TP size to 20% resulted in non-significant changes in accuracies. The QTLs identified were also incorporated in the models as fixed effects, showing significant accuracy gain for all four populations. Our results confirm that the prediction accuracy depends considerably on the relatedness between TP and VP, but not on the number of markers and size of TP used. Furthermore, feeding the model with information on markers associated with QTLs increased the overall accuracy. |
format | Online Article Text |
id | pubmed-7218065 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-72180652020-05-20 Combining QTL Analysis and Genomic Predictions for Four Durum Wheat Populations Under Drought Conditions Zaïm, Meryem Kabbaj, Hafssa Kehel, Zakaria Gorjanc, Gregor Filali-Maltouf, Abdelkarim Belkadi, Bouchra Nachit, Miloudi M. Bassi, Filippo M. Front Genet Genetics Durum wheat is an important crop for the human diet and its consumption is gaining popularity. In order to ensure that durum wheat production maintains the pace with the increase in demand, it is necessary to raise productivity by approximately 1.5% per year. To deliver this level of annual genetic gain the incorporation of molecular strategies has been proposed as a key solution. Here, four RILs populations were used to conduct QTL discovery for grain yield (GY) and 1,000 kernel weight (TKW). A total of 576 individuals were sown at three locations in Morocco and one in Lebanon. These individuals were genotyped by sequencing with 3,202 high-confidence polymorphic markers, to derive a consensus genetic map of 2,705.7 cM, which was used to impute any missing data. Six QTLs were found to be associated with GY and independent from flowering time on chromosomes 2B, 4A, 5B, 7A and 7B, explaining a phenotypic variation (PV) ranging from 4.3 to 13.4%. The same populations were used to train genomic prediction models incorporating the relationship matrix, the genotype by environment interaction, and marker by environment interaction, to reveal significant advantages for models incorporating the marker effect. Using training populations (TP) in full sibs relationships with the validation population (VP) was shown to be the only effective strategy, with accuracies reaching 0.35–0.47 for GY. Reducing the number of markers to 10% of the whole set, and the TP size to 20% resulted in non-significant changes in accuracies. The QTLs identified were also incorporated in the models as fixed effects, showing significant accuracy gain for all four populations. Our results confirm that the prediction accuracy depends considerably on the relatedness between TP and VP, but not on the number of markers and size of TP used. Furthermore, feeding the model with information on markers associated with QTLs increased the overall accuracy. Frontiers Media S.A. 2020-05-06 /pmc/articles/PMC7218065/ /pubmed/32435259 http://dx.doi.org/10.3389/fgene.2020.00316 Text en Copyright © 2020 Zaïm, Kabbaj, Kehel, Gorjanc, Filali-Maltouf, Belkadi, Nachit and Bassi. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Genetics Zaïm, Meryem Kabbaj, Hafssa Kehel, Zakaria Gorjanc, Gregor Filali-Maltouf, Abdelkarim Belkadi, Bouchra Nachit, Miloudi M. Bassi, Filippo M. Combining QTL Analysis and Genomic Predictions for Four Durum Wheat Populations Under Drought Conditions |
title | Combining QTL Analysis and Genomic Predictions for Four Durum Wheat Populations Under Drought Conditions |
title_full | Combining QTL Analysis and Genomic Predictions for Four Durum Wheat Populations Under Drought Conditions |
title_fullStr | Combining QTL Analysis and Genomic Predictions for Four Durum Wheat Populations Under Drought Conditions |
title_full_unstemmed | Combining QTL Analysis and Genomic Predictions for Four Durum Wheat Populations Under Drought Conditions |
title_short | Combining QTL Analysis and Genomic Predictions for Four Durum Wheat Populations Under Drought Conditions |
title_sort | combining qtl analysis and genomic predictions for four durum wheat populations under drought conditions |
topic | Genetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218065/ https://www.ncbi.nlm.nih.gov/pubmed/32435259 http://dx.doi.org/10.3389/fgene.2020.00316 |
work_keys_str_mv | AT zaimmeryem combiningqtlanalysisandgenomicpredictionsforfourdurumwheatpopulationsunderdroughtconditions AT kabbajhafssa combiningqtlanalysisandgenomicpredictionsforfourdurumwheatpopulationsunderdroughtconditions AT kehelzakaria combiningqtlanalysisandgenomicpredictionsforfourdurumwheatpopulationsunderdroughtconditions AT gorjancgregor combiningqtlanalysisandgenomicpredictionsforfourdurumwheatpopulationsunderdroughtconditions AT filalimaltoufabdelkarim combiningqtlanalysisandgenomicpredictionsforfourdurumwheatpopulationsunderdroughtconditions AT belkadibouchra combiningqtlanalysisandgenomicpredictionsforfourdurumwheatpopulationsunderdroughtconditions AT nachitmiloudim combiningqtlanalysisandgenomicpredictionsforfourdurumwheatpopulationsunderdroughtconditions AT bassifilippom combiningqtlanalysisandgenomicpredictionsforfourdurumwheatpopulationsunderdroughtconditions |