Cargando…
APEC: an accesson-based method for single-cell chromatin accessibility analysis
The development of sequencing technologies has promoted the survey of genome-wide chromatin accessibility at single-cell resolution. However, comprehensive analysis of single-cell epigenomic profiles remains a challenge. Here, we introduce an accessibility pattern-based epigenomic clustering (APEC)...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218568/ https://www.ncbi.nlm.nih.gov/pubmed/32398051 http://dx.doi.org/10.1186/s13059-020-02034-y |
Sumario: | The development of sequencing technologies has promoted the survey of genome-wide chromatin accessibility at single-cell resolution. However, comprehensive analysis of single-cell epigenomic profiles remains a challenge. Here, we introduce an accessibility pattern-based epigenomic clustering (APEC) method, which classifies each cell by groups of accessible regions with synergistic signal patterns termed “accessons”. This python-based package greatly improves the accuracy of unsupervised single-cell clustering for many public datasets. It also predicts gene expression, identifies enriched motifs, discovers super-enhancers, and projects pseudotime trajectories. APEC is available at https://github.com/QuKunLab/APEC. |
---|