Cargando…
Artificial Intelligence-Based Differential Diagnosis: Development and Validation of a Probabilistic Model to Address Lack of Large-Scale Clinical Datasets
BACKGROUND: Machine-learning or deep-learning algorithms for clinical diagnosis are inherently dependent on the availability of large-scale clinical datasets. Lack of such datasets and inherent problems such as overfitting often necessitate the development of innovative solutions. Probabilistic mode...
Autores principales: | Chishti, Shahrukh, Jaggi, Karan Raj, Saini, Anuj, Agarwal, Gaurav, Ranjan, Ashish |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218591/ https://www.ncbi.nlm.nih.gov/pubmed/32343256 http://dx.doi.org/10.2196/17550 |
Ejemplares similares
-
Predicting or Pretending: Artificial Intelligence for Protein-Ligand Interactions Lack of Sufficiently Large and Unbiased Datasets
por: Yang, Jincai, et al.
Publicado: (2020) -
Addressing Artificial Intelligence Bias in Retinal Diagnostics
por: Burlina, Philippe, et al.
Publicado: (2021) -
Addressing fairness in artificial intelligence for medical imaging
por: Ricci Lara, María Agustina, et al.
Publicado: (2022) -
Addressing COVID‐19 Drug Development with Artificial Intelligence
por: Ho, Dean
Publicado: (2020) -
Human-Centered Design to Address Biases in Artificial Intelligence
por: Chen, You, et al.
Publicado: (2023)