Cargando…

A Data-Driven Adaptive Sampling Method Based on Edge Computing

The rise of edge computing has promoted the development of the industrial internet of things (IIoT). Supported by edge computing technology, data acquisition can also support more complex and perfect application requirements in industrial field. Most of traditional sampling methods use constant samp...

Descripción completa

Detalles Bibliográficos
Autores principales: Lou, Ping, Shi, Liang, Zhang, Xiaomei, Xiao, Zheng, Yan, Junwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218728/
https://www.ncbi.nlm.nih.gov/pubmed/32290534
http://dx.doi.org/10.3390/s20082174
Descripción
Sumario:The rise of edge computing has promoted the development of the industrial internet of things (IIoT). Supported by edge computing technology, data acquisition can also support more complex and perfect application requirements in industrial field. Most of traditional sampling methods use constant sampling frequency and ignore the impact of changes of sampling objects during the data acquisition. For the problem of sampling distortion, edge data redundancy and energy consumption caused by constant sampling frequency of sensors in the IIoT, a data-driven adaptive sampling method based on edge computing is proposed in this paper. The method uses the latest data collected by the sensors at the edge node for linear fitting and adjusts the next sampling frequency according to the linear median jitter sum and adaptive sampling strategy. An edge data acquisition platform is established to verify the validity of the method. According to the experimental results, the proposed method is more effective than other adaptive sampling methods. Compared with constant sampling frequency, the proposed method can reduce the edge data redundancy and energy consumption by more than 13.92% and 12.86%, respectively.