Cargando…
Estimation of Temperature and Associated Uncertainty from Fiber-Optic Raman-Spectrum Distributed Temperature Sensing
Distributed temperature sensing (DTS) systems can be used to estimate the temperature along optic fibers of several kilometers at a sub-meter interval. DTS systems function by shooting laser pulses through a fiber and measuring its backscatter intensity at two distinct wavelengths in the Raman spect...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218869/ https://www.ncbi.nlm.nih.gov/pubmed/32326544 http://dx.doi.org/10.3390/s20082235 |
_version_ | 1783532879978954752 |
---|---|
author | des Tombe, Bas Schilperoort, Bart Bakker, Mark |
author_facet | des Tombe, Bas Schilperoort, Bart Bakker, Mark |
author_sort | des Tombe, Bas |
collection | PubMed |
description | Distributed temperature sensing (DTS) systems can be used to estimate the temperature along optic fibers of several kilometers at a sub-meter interval. DTS systems function by shooting laser pulses through a fiber and measuring its backscatter intensity at two distinct wavelengths in the Raman spectrum. The scattering-loss coefficients for these wavelengths are temperature-dependent, so that the temperature along the fiber can be estimated using calibration to fiber sections with a known temperature. A new calibration approach is developed that allows for an estimate of the uncertainty of the estimated temperature, which varies along the fiber and with time. The uncertainty is a result of the noise from the detectors and the uncertainty in the calibrated parameters that relate the backscatter intensity to temperature. Estimation of the confidence interval of the temperature requires an estimate of the distribution of the noise from the detectors and an estimate of the multi-variate distribution of the parameters. Both distributions are propagated with Monte Carlo sampling to approximate the probability density function of the estimated temperature, which is different at each point along the fiber and varies over time. Various summarizing statistics are computed from the approximate probability density function, such as the confidence intervals and the standard uncertainty (the estimated standard deviation) of the estimated temperature. An example is presented to demonstrate the approach and to assess the reasonableness of the estimated confidence intervals. The approach is implemented in the open-source Python package “dtscalibration”. |
format | Online Article Text |
id | pubmed-7218869 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-72188692020-05-22 Estimation of Temperature and Associated Uncertainty from Fiber-Optic Raman-Spectrum Distributed Temperature Sensing des Tombe, Bas Schilperoort, Bart Bakker, Mark Sensors (Basel) Article Distributed temperature sensing (DTS) systems can be used to estimate the temperature along optic fibers of several kilometers at a sub-meter interval. DTS systems function by shooting laser pulses through a fiber and measuring its backscatter intensity at two distinct wavelengths in the Raman spectrum. The scattering-loss coefficients for these wavelengths are temperature-dependent, so that the temperature along the fiber can be estimated using calibration to fiber sections with a known temperature. A new calibration approach is developed that allows for an estimate of the uncertainty of the estimated temperature, which varies along the fiber and with time. The uncertainty is a result of the noise from the detectors and the uncertainty in the calibrated parameters that relate the backscatter intensity to temperature. Estimation of the confidence interval of the temperature requires an estimate of the distribution of the noise from the detectors and an estimate of the multi-variate distribution of the parameters. Both distributions are propagated with Monte Carlo sampling to approximate the probability density function of the estimated temperature, which is different at each point along the fiber and varies over time. Various summarizing statistics are computed from the approximate probability density function, such as the confidence intervals and the standard uncertainty (the estimated standard deviation) of the estimated temperature. An example is presented to demonstrate the approach and to assess the reasonableness of the estimated confidence intervals. The approach is implemented in the open-source Python package “dtscalibration”. MDPI 2020-04-15 /pmc/articles/PMC7218869/ /pubmed/32326544 http://dx.doi.org/10.3390/s20082235 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article des Tombe, Bas Schilperoort, Bart Bakker, Mark Estimation of Temperature and Associated Uncertainty from Fiber-Optic Raman-Spectrum Distributed Temperature Sensing |
title | Estimation of Temperature and Associated Uncertainty from Fiber-Optic Raman-Spectrum Distributed Temperature Sensing |
title_full | Estimation of Temperature and Associated Uncertainty from Fiber-Optic Raman-Spectrum Distributed Temperature Sensing |
title_fullStr | Estimation of Temperature and Associated Uncertainty from Fiber-Optic Raman-Spectrum Distributed Temperature Sensing |
title_full_unstemmed | Estimation of Temperature and Associated Uncertainty from Fiber-Optic Raman-Spectrum Distributed Temperature Sensing |
title_short | Estimation of Temperature and Associated Uncertainty from Fiber-Optic Raman-Spectrum Distributed Temperature Sensing |
title_sort | estimation of temperature and associated uncertainty from fiber-optic raman-spectrum distributed temperature sensing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218869/ https://www.ncbi.nlm.nih.gov/pubmed/32326544 http://dx.doi.org/10.3390/s20082235 |
work_keys_str_mv | AT destombebas estimationoftemperatureandassociateduncertaintyfromfiberopticramanspectrumdistributedtemperaturesensing AT schilperoortbart estimationoftemperatureandassociateduncertaintyfromfiberopticramanspectrumdistributedtemperaturesensing AT bakkermark estimationoftemperatureandassociateduncertaintyfromfiberopticramanspectrumdistributedtemperaturesensing |