Cargando…

Deeply Integrated GNSS/Gyro Attitude Determination System

Attitude determination systems based on Global Navigation Satellite Systems (GNSS) work on principle of phase interferometer, using multiple receiving antennas. They rely on a good quality of carrier phase tracking, that is not the case in real dynamic environment with low signal-to-noise ratio (SNR...

Descripción completa

Detalles Bibliográficos
Autores principales: Perov, Alexander, Shatilov, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218873/
https://www.ncbi.nlm.nih.gov/pubmed/32295068
http://dx.doi.org/10.3390/s20082203
Descripción
Sumario:Attitude determination systems based on Global Navigation Satellite Systems (GNSS) work on principle of phase interferometer, using multiple receiving antennas. They rely on a good quality of carrier phase tracking, that is not the case in real dynamic environment with low signal-to-noise ratio (SNR), for example, in a ground vehicle moving through an urban area or forest. There is still a problem in providing a GNSS attitude in such common conditions. This research is focused on improving sensitivity (i.e., the capability of providing attitude at a low SNR) and the reliability of the GNSS attitude determination system. It is contrasted with the majority of publications, where precision or computational efficiency is the main goal, but sensitivity and reliability are out of their scope. In the proposed system, sensitivity improved by using two measures: (a) tracking only phase differences instead of tracking full carrier phases—this is more sensitive due to the lower dynamics of the underlying process, and (b) using deep integration with gyroscope, where all phase differences are tracked in a vector gyro-aided loop closed on user’s attitude in state vector. The algorithm synthesis is given, and simulation results are presented in this article. This shows that the minimal working SNR is lowered from 27–36 dBHz (typical) down to 20 dBHz, even with a low-cost MEMS gyroscope.