Cargando…
Keys for Action: An Efficient Keyframe-Based Approach for 3D Action Recognition Using a Deep Neural Network
In this paper, we propose a novel and efficient framework for 3D action recognition using a deep learning architecture. First, we develop a 3D normalized pose space that consists of only 3D normalized poses, which are generated by discarding translation and orientation information. From these poses,...
Autores principales: | Yasin, Hashim, Hussain, Mazhar, Weber, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218879/ https://www.ncbi.nlm.nih.gov/pubmed/32326468 http://dx.doi.org/10.3390/s20082226 |
Ejemplares similares
-
Keyframe image processing of semantic 3D point clouds based on deep learning
por: Wang, Junxian, et al.
Publicado: (2023) -
Long Jump Action Recognition Based on Deep Convolutional Neural Network
por: Wang, Zhiteng
Publicado: (2022) -
Retracted: Long Jump Action Recognition Based on Deep Convolutional Neural Network
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
Action Recognition Using Action Sequences Optimization and Two-Stream 3D Dilated Neural Network
por: Xiong, Xin, et al.
Publicado: (2022) -
Clustering Denoising of 2D LiDAR Scanning in Indoor Environment Based on Keyframe Extraction
por: Hu, Weiwei, et al.
Publicado: (2022)