Cargando…
Robust In-Plane Structures Oscillation Monitoring by Terrestrial Photogrammetry
Oscillation monitoring commonly requires complex setups integrating various types of sensors associated with intensive computations to achieve an adequate rate of observations and accuracy. This research presents a simple, cost-effective approach that allows two-dimensional oscillation monitoring by...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218887/ https://www.ncbi.nlm.nih.gov/pubmed/32326488 http://dx.doi.org/10.3390/s20082223 |
Sumario: | Oscillation monitoring commonly requires complex setups integrating various types of sensors associated with intensive computations to achieve an adequate rate of observations and accuracy. This research presents a simple, cost-effective approach that allows two-dimensional oscillation monitoring by terrestrial photogrammetry using non-metric cameras. Tedious camera calibration procedures are eliminated by using a grid target that allows geometric correction to be performed to the frame’s region of interest at which oscillations are monitored. Region-based convolutional neural networks (Faster R-CNN) techniques are adopted to minimize the light exposure limitations, commonly constraining applications of terrestrial photogrammetry. The proposed monitoring procedure is tested at outdoor conditions to check its reliability and accuracy and examining the effect of using Faster R-CNN on monitoring results. The proposed artificial intelligence (AI) aided oscillation monitoring allowed sub-millimeter accuracy monitoring with observation rates up to 60 frames per second and gained the benefit of high optical zoom offered by market available bridge cameras to monitor oscillation of targets 100 m apart with high accuracy. |
---|