Cargando…

A Novel Machine Learning Aided Antenna Selection Scheme for MIMO Internet of Things

In this article, we propose a multi-label convolution neural network (MLCNN)-aided transmit antenna selection (AS) scheme for end-to-end multiple-input multiple-output (MIMO) Internet of Things (IoT) communication systems in correlated channel conditions. In contrast to the conventional single-label...

Descripción completa

Detalles Bibliográficos
Autores principales: An, Wannian, Zhang, Peichang, Xu, Jiajun, Luo, Huancong, Huang, Lei, Zhong, Shida
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218900/
https://www.ncbi.nlm.nih.gov/pubmed/32316141
http://dx.doi.org/10.3390/s20082250
Descripción
Sumario:In this article, we propose a multi-label convolution neural network (MLCNN)-aided transmit antenna selection (AS) scheme for end-to-end multiple-input multiple-output (MIMO) Internet of Things (IoT) communication systems in correlated channel conditions. In contrast to the conventional single-label multi-class classification ML schemes, we opt for using the concept of multi-label in the proposed MLCNN-aided transmit AS MIMO IoT system, which may greatly reduce the length of training labels in the case of multi-antenna selection. Additionally, applying multi-label concept may significantly improve the prediction accuracy of the trained MLCNN model under correlated large-scale MIMO channel conditions with less training data. The corresponding simulation results verified that the proposed MLCNN-aided AS scheme may be capable of achieving near-optimal capacity performance in real time, and the performance is relatively insensitive to the effects of imperfect CSI.