Cargando…
ENERGY BALANCE AND VITAL SIGNS IN PEDIATRIC PATIENTS
BACKGROUND: Prior studies have shown that vital signs such as heart rate, blood pressure and body temperature are depressed in patients with an eating disorder who have experienced a negative energy balance for a significant amount of time. More recently, a negative energy balance has been the focus...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218987/ http://dx.doi.org/10.1177/2325967120S00206 |
Sumario: | BACKGROUND: Prior studies have shown that vital signs such as heart rate, blood pressure and body temperature are depressed in patients with an eating disorder who have experienced a negative energy balance for a significant amount of time. More recently, a negative energy balance has been the focus of Relative Energy Deficiency in Sport (RED-S), which links energy availability to the health of multiple body systems in adults in as little as 5 days with a negative energy balance. High rates of disordered eating patterns have been reported in high school athletes. As adolescents grow, the consequences of a negative energy balance can be significant and potentially irreversible. Thus, vital signs may help clinicians quickly evaluate a patient’s energy status or highlight them for further evaluation. PURPOSE: The purpose of this study was to examine energy balance and vital signs in a cohort of adolescents who were seen by a sports dietitian to gain weight or optimize sports performance. METHODS: We evaluated 240 subjects, 83% female, average age 15.0±2.3 years. Heart rate and blood pressure were measured with a dynamometer in a seated position. Body temperature was measured orally. Height and weight were recorded. BMI was then calculated and evaluated by percentile. Energy intake was assessed using a 3-day food recall log. Energy expenditure was calculated using Harris Benedict Equation and combined with estimated exercise energy expenditure. Energy balance was estimated as energy intake minus energy expenditure. RESULTS: Average age was 15.03±2.71. 85% were female. 30% were below the 15(th) percentile for BMI. There were no differences in BMI percentiles between males and females (p=0.99). The average heart rate was 71.62±13.4 bpm and 19% were below the 10(th) percentile for heart rate. Average systolic blood pressure was 110±11 mm Hg and average diastolic blood pressure was 62±7 mmHg. Average temperature was 98.1±.4 degrees F. 88%were in a negative energy balance with an average energy deficit of 552±511 calories. There were no statistically significant differences in energy balance between males and females (p=0.08). CONCLUSIONS: A disproportional number of children with low BMI and heart rate percentiles was observed, which may indicate a long-standing energy deficiency. We also found a high proportion of adolescents who experienced a standalone negative energy balance itself or vital signs consistent with a negative energy balance. Additional studies are needed to study the relationships between energy deficit magnitude and duration in adolescents and children. |
---|