Cargando…

An Electrically Tunable Dual-Wavelength Refractive Index Sensor Based on a Metagrating Structure Integrating Epsilon-Near-Zero Materials

In this paper, a reconfigurable sensing platform based on an asymmetrical metal-insulator-metal stacked structure integrating an indium tin oxide (ITO) ultrathin film is proposed and investigated numerically. The epsilon-near-zero (ENZ) mode and antisymmetric mode can be resonantly excited, generati...

Descripción completa

Detalles Bibliográficos
Autores principales: Meng, Zhenya, Cao, Hailin, Liu, Run, Wu, Xiaodong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219054/
https://www.ncbi.nlm.nih.gov/pubmed/32316493
http://dx.doi.org/10.3390/s20082301
Descripción
Sumario:In this paper, a reconfigurable sensing platform based on an asymmetrical metal-insulator-metal stacked structure integrating an indium tin oxide (ITO) ultrathin film is proposed and investigated numerically. The epsilon-near-zero (ENZ) mode and antisymmetric mode can be resonantly excited, generating near-perfect absorption of over 99.7% at 1144 and 1404 nm, respectively. The absorptivity for the ENZ mode can be modulated from 90.2% to 98.0% by varying the ENZ wavelength of ITO by applying different voltages. To obtain a highly sensitive biosensor, we show that the proposed structure has a full-width at half-maximum (FWHM) of 8.65 nm and a figure-of-merit (FOM) of 24.7 with a sensitivity of 213.3 nm/RI (refractive index) for the glucose solution. Our proposed device has potential for developing tunable biosensors for real-time health monitoring.