Cargando…
Research on Remote GPS Common-View Precise Time Transfer Based on Different Ionosphere Disturbances
Propagation path delays are a major error for the remote precise time transfer of common view; these path delays contain the ionosphere and troposphere impact, while the contributions of the ionosphere and the troposphere from common-view satellites to receivers on the ground tend to become uncorrel...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219064/ https://www.ncbi.nlm.nih.gov/pubmed/32316505 http://dx.doi.org/10.3390/s20082290 |
_version_ | 1783532921446989824 |
---|---|
author | Zhang, Jingkui Gao, Jingxiang Yu, Baoguo Sheng, Chuanzhen Gan, Xingli |
author_facet | Zhang, Jingkui Gao, Jingxiang Yu, Baoguo Sheng, Chuanzhen Gan, Xingli |
author_sort | Zhang, Jingkui |
collection | PubMed |
description | Propagation path delays are a major error for the remote precise time transfer of common view; these path delays contain the ionosphere and troposphere impact, while the contributions of the ionosphere and the troposphere from common-view satellites to receivers on the ground tend to become uncorrelated when the distance between these receivers increases. In order to select the appropriate ionospheric correction method for common view under different distances between receivers, a detailed test using multi-source data under different ionosphere disturbances are carried out in this paper. Here, we choose three different ionosphere disturbance methods and analyze the advantages and disadvantages of these methods for common-view time transfer and time comparison. At last, we put forward a suitable ionospheric correction method for different distances common view. The RMS shows that the method proposed for 3000 km remote common view can achieve 2.5 ns. |
format | Online Article Text |
id | pubmed-7219064 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-72190642020-05-22 Research on Remote GPS Common-View Precise Time Transfer Based on Different Ionosphere Disturbances Zhang, Jingkui Gao, Jingxiang Yu, Baoguo Sheng, Chuanzhen Gan, Xingli Sensors (Basel) Article Propagation path delays are a major error for the remote precise time transfer of common view; these path delays contain the ionosphere and troposphere impact, while the contributions of the ionosphere and the troposphere from common-view satellites to receivers on the ground tend to become uncorrelated when the distance between these receivers increases. In order to select the appropriate ionospheric correction method for common view under different distances between receivers, a detailed test using multi-source data under different ionosphere disturbances are carried out in this paper. Here, we choose three different ionosphere disturbance methods and analyze the advantages and disadvantages of these methods for common-view time transfer and time comparison. At last, we put forward a suitable ionospheric correction method for different distances common view. The RMS shows that the method proposed for 3000 km remote common view can achieve 2.5 ns. MDPI 2020-04-17 /pmc/articles/PMC7219064/ /pubmed/32316505 http://dx.doi.org/10.3390/s20082290 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Jingkui Gao, Jingxiang Yu, Baoguo Sheng, Chuanzhen Gan, Xingli Research on Remote GPS Common-View Precise Time Transfer Based on Different Ionosphere Disturbances |
title | Research on Remote GPS Common-View Precise Time Transfer Based on Different Ionosphere Disturbances |
title_full | Research on Remote GPS Common-View Precise Time Transfer Based on Different Ionosphere Disturbances |
title_fullStr | Research on Remote GPS Common-View Precise Time Transfer Based on Different Ionosphere Disturbances |
title_full_unstemmed | Research on Remote GPS Common-View Precise Time Transfer Based on Different Ionosphere Disturbances |
title_short | Research on Remote GPS Common-View Precise Time Transfer Based on Different Ionosphere Disturbances |
title_sort | research on remote gps common-view precise time transfer based on different ionosphere disturbances |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219064/ https://www.ncbi.nlm.nih.gov/pubmed/32316505 http://dx.doi.org/10.3390/s20082290 |
work_keys_str_mv | AT zhangjingkui researchonremotegpscommonviewprecisetimetransferbasedondifferentionospheredisturbances AT gaojingxiang researchonremotegpscommonviewprecisetimetransferbasedondifferentionospheredisturbances AT yubaoguo researchonremotegpscommonviewprecisetimetransferbasedondifferentionospheredisturbances AT shengchuanzhen researchonremotegpscommonviewprecisetimetransferbasedondifferentionospheredisturbances AT ganxingli researchonremotegpscommonviewprecisetimetransferbasedondifferentionospheredisturbances |