Cargando…
Extracting Common Mode Errors of Regional GNSS Position Time Series in the Presence of Missing Data by Variational Bayesian Principal Component Analysis
Removal of the common mode error (CME) is very important for the investigation of global navigation satellite systems’ (GNSS) error and the estimation of an accurate GNSS velocity field for geodynamic applications. The commonly used spatiotemporal filtering methods normally process the evenly spaced...
Autores principales: | Li, Wudong, Jiang, Weiping, Li, Zhao, Chen, Hua, Chen, Qusen, Wang, Jian, Zhu, Guangbin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219079/ https://www.ncbi.nlm.nih.gov/pubmed/32316478 http://dx.doi.org/10.3390/s20082298 |
Ejemplares similares
-
Stable Tensor Principal Component Pursuit: Error Bounds and Efficient Algorithms
por: Fang, Wei, et al.
Publicado: (2019) -
Missing and Corrupted Data Recovery in Wireless Sensor Networks Based on Weighted Robust Principal Component Analysis
por: He, Jingfei, et al.
Publicado: (2022) -
On-line Smoothing and Error Modelling for Integration of GNSS and Visual Odometry
por: Duong, Thanh Trung, et al.
Publicado: (2019) -
Haplotype frequency estimation error analysis in the presence of missing genotype data
por: Kelly, Enda D, et al.
Publicado: (2004) -
Missing Traffic Data Imputation with a Linear Generative Model Based on Probabilistic Principal Component Analysis
por: Huang, Liping, et al.
Publicado: (2022)