Cargando…
Investigating the Significant Individual Historical Factors of Driving Risk Using Hierarchical Clustering Analysis and Quasi-Poisson Regression Model
Driving risk varies substantially according to many factors related to the driven vehicle, environmental conditions, and drivers. This study explores the contributing historical factors of driving risk with hierarchical clustering analysis and the quasi-Poisson regression model. The dataset of the s...
Autores principales: | Naji, Hasan A.H., Xue, Qingji, Zheng, Ke, Lyu, Nengchao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219231/ https://www.ncbi.nlm.nih.gov/pubmed/32325844 http://dx.doi.org/10.3390/s20082331 |
Ejemplares similares
-
Negative-Binomial and quasi-poisson regressions between COVID-19, mobility and environment in São Paulo, Brazil
por: Ibarra-Espinosa, Sergio, et al.
Publicado: (2022) -
Measures of clustering and heterogeneity in multilevel Poisson regression analyses of rates/count data
por: Austin, Peter C., et al.
Publicado: (2017) -
Driving Risk Assessment Using Near-Miss Events Based on Panel Poisson Regression and Panel Negative Binomial Regression
por: Sun, Shuai, et al.
Publicado: (2021) -
Forecasting the 2020 COVID-19 Epidemic: A Multivariate Quasi-Poisson Regression to Model the Evolution of New Cases in Chile
por: Vicuña, María Ignacia, et al.
Publicado: (2021) -
Approximation of the Cox survival regression model by MCMC Bayesian Hierarchical Poisson modelling of factors associated with childhood mortality in Nigeria
por: Fagbamigbe, A. F., et al.
Publicado: (2021)