Cargando…
Explicit non-Markovian susceptible-infected-susceptible mean-field epidemic threshold for Weibull and Gamma infections but Poisson curings
Although non-Markovian processes are considerably more complicated to analyze, real-world epidemics are likely non-Markovian, because the infection time is not always exponentially distributed. Here, we present analytic expressions of the epidemic threshold in a Weibull and a Gamma SIS epidemic on a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Physical Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219265/ https://www.ncbi.nlm.nih.gov/pubmed/31574702 http://dx.doi.org/10.1103/PhysRevE.100.022317 |
Sumario: | Although non-Markovian processes are considerably more complicated to analyze, real-world epidemics are likely non-Markovian, because the infection time is not always exponentially distributed. Here, we present analytic expressions of the epidemic threshold in a Weibull and a Gamma SIS epidemic on any network, where the infection time is Weibull, respectively, Gamma, but the recovery time is exponential. The theory is compared with precise simulations. The mean-field non-Markovian epidemic thresholds, both for a Weibull and Gamma infection time, are physically similar and interpreted via the occurrence time of an infection during a healthy period of each node in the graph. Our theory couples the type of a viral item, specified by a shape parameter of the Weibull or Gamma distribution, to its corresponding network-wide endemic spreading power, which is specified by the mean-field non-Markovian epidemic threshold in any network. |
---|