Cargando…
Facial Expressions Recognition for Human–Robot Interaction Using Deep Convolutional Neural Networks with Rectified Adam Optimizer
The interaction between humans and an NAO robot using deep convolutional neural networks (CNN) is presented in this paper based on an innovative end-to-end pipeline method that applies two optimized CNNs, one for face recognition (FR) and another one for the facial expression recognition (FER) in or...
Autores principales: | Melinte, Daniel Octavian, Vladareanu, Luige |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219340/ https://www.ncbi.nlm.nih.gov/pubmed/32340140 http://dx.doi.org/10.3390/s20082393 |
Ejemplares similares
-
Automatic Facial Recognition of Williams-Beuren Syndrome Based on Deep Convolutional Neural Networks
por: Liu, Hui, et al.
Publicado: (2021) -
HyAdamC: A New Adam-Based Hybrid Optimization Algorithm for Convolution Neural Networks
por: Kim, Kyung-Soo, et al.
Publicado: (2021) -
Self-Difference Convolutional Neural Network for Facial Expression Recognition
por: Liu, Leyuan, et al.
Publicado: (2021) -
Advanced Intelligent Control in Robots
por: Vladareanu, Luige, et al.
Publicado: (2023) -
Deep-Emotion: Facial Expression Recognition Using Attentional Convolutional Network
por: Minaee, Shervin, et al.
Publicado: (2021)