Cargando…
Analyzing the Effectiveness of the Brain–Computer Interface for Task Discerning Based on Machine Learning
The aim of the study is to compare electroencephalographic (EEG) signal feature extraction methods in the context of the effectiveness of the classification of brain activities. For classification, electroencephalographic signals were obtained using an EEG device from 17 subjects in three mental sta...
Autores principales: | Browarczyk, Jakub, Kurowski, Adam, Kostek, Bozena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219492/ https://www.ncbi.nlm.nih.gov/pubmed/32340276 http://dx.doi.org/10.3390/s20082403 |
Ejemplares similares
-
The Ensemble Machine Learning-Based Classification of Motor Imagery Tasks in Brain-Computer Interface
por: Subasi, Abdulhamit, et al.
Publicado: (2021) -
Acoustic Sensing Analytics Applied to Speech in Reverberation Conditions
por: Odya, Piotr, et al.
Publicado: (2021) -
A Novel Method for Intelligibility Assessment of Nonlinearly Processed Speech in Spaces Characterized by Long Reverberation Times
por: Kurowski, Adam, et al.
Publicado: (2022) -
An Integrated Machine Learning-Based Brain Computer Interface to Classify Diverse Limb Motor Tasks: Explainable Model
por: Hashem, Hend A., et al.
Publicado: (2023) -
Multifactor consciousness level assessment of participants with acquired brain injuries employing human–computer interfaces
por: Czyżewski, Andrzej, et al.
Publicado: (2020)