Cargando…
Exposing Digital Image Forgeries by Detecting Contextual Abnormality Using Convolutional Neural Networks
Traditionally, digital image forensics mainly focused on the low-level features of an image, such as edges and texture, because these features include traces of the image’s modification history. However, previous methods that employed low-level features are highly vulnerable, even to frequently used...
Autores principales: | Jang, Haneol, Hou, Jong-Uk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219587/ https://www.ncbi.nlm.nih.gov/pubmed/32316220 http://dx.doi.org/10.3390/s20082262 |
Ejemplares similares
-
Exposing Image Forgery by Detecting Consistency of Shadow
por: Ke, Yongzhen, et al.
Publicado: (2014) -
Forgery Detection in Digital Images by Multi-Scale Noise Estimation
por: Gardella, Marina, et al.
Publicado: (2021) -
Digital Image Forgery Detection Using JPEG Features and Local Noise Discrepancies
por: Liu, Bo, et al.
Publicado: (2014) -
The tremor of forgery /
por: Highsmith, Patricia, 1921-1995
Publicado: (1982) -
New Texture Descriptor Based on Modified Fractional Entropy for Digital Image Splicing Forgery Detection
por: Jalab, Hamid A., et al.
Publicado: (2019)