Cargando…
A Fast Spatial Clustering Method for Sparse LiDAR Point Clouds Using GPU Programming
Fast and accurate obstacle detection is essential for accurate perception of mobile vehicles’ environment. Because point clouds sensed by light detection and ranging (LiDAR) sensors are sparse and unstructured, traditional obstacle clustering on raw point clouds are inaccurate and time consuming. Th...
Autores principales: | Tian, Yifei, Song, Wei, Chen, Long, Sung, Yunsick, Kwak, Jeonghoon, Sun, Su |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219594/ https://www.ncbi.nlm.nih.gov/pubmed/32325631 http://dx.doi.org/10.3390/s20082309 |
Ejemplares similares
-
LiDAR Point Cloud Generation for SLAM Algorithm Evaluation
por: Sobczak, Łukasz, et al.
Publicado: (2021) -
Aerial LiDAR Data Augmentation for Direct Point-Cloud Visualisation
por: Bohak, Ciril, et al.
Publicado: (2020) -
PLIN: A Network for Pseudo-LiDAR Point Cloud Interpolation
por: Liu, Haojie, et al.
Publicado: (2020) -
Deep Learning for LiDAR Point Cloud Classification in Remote Sensing
por: Diab, Ahmed, et al.
Publicado: (2022) -
LiDAR Point Cloud Recognition of Overhead Catenary System with Deep Learning
por: Lin, Shuai, et al.
Publicado: (2020)