Cargando…
Big Data Analytics and Structural Health Monitoring: A Statistical Pattern Recognition-Based Approach
Recent advances in sensor technologies and data acquisition systems opened up the era of big data in the field of structural health monitoring (SHM). Data-driven methods based on statistical pattern recognition provide outstanding opportunities to implement a long-term SHM strategy, by exploiting me...
Autores principales: | Entezami, Alireza, Sarmadi, Hassan, Behkamal, Behshid, Mariani, Stefano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219663/ https://www.ncbi.nlm.nih.gov/pubmed/32325821 http://dx.doi.org/10.3390/s20082328 |
Ejemplares similares
-
Health Monitoring of Large-Scale Civil Structures: An Approach Based on Data Partitioning and Classical Multidimensional Scaling
por: Entezami, Alireza, et al.
Publicado: (2021) -
Detection of Partially Structural Collapse Using Long-Term Small Displacement Data from Satellite Images
por: Entezami, Alireza, et al.
Publicado: (2022) -
Big data solutions for CMS computing monitoring and analytics
por: Ariza-Porras, Christian, et al.
Publicado: (2020) -
Damage Detection in Largely Unobserved Structures under Varying Environmental Conditions: An AutoRegressive Spectrum and Multi-Level Machine Learning Methodology
por: Entezami, Alireza, et al.
Publicado: (2022) -
Big Data Analytics: Turning Big Data into Big Money
por: Ohlhorst, Frank
Publicado: (2012)