Cargando…
Improvement of electrocardiographic diagnostic accuracy of left ventricular hypertrophy using a Machine Learning approach
The electrocardiogram (ECG) is the most common tool used to predict left ventricular hypertrophy (LVH). However, it is limited by its low accuracy (<60%) and sensitivity (30%). We set forth the hypothesis that the Machine Learning (ML) C5.0 algorithm could optimize the ECG in the prediction of LV...
Autores principales: | De la Garza-Salazar, Fernando, Romero-Ibarguengoitia, Maria Elena, Rodriguez-Diaz, Elias Abraham, Azpiri-Lopez, Jose Ramón, González-Cantu, Arnulfo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219774/ https://www.ncbi.nlm.nih.gov/pubmed/32401764 http://dx.doi.org/10.1371/journal.pone.0232657 |
Ejemplares similares
-
Optimizing ECG to detect echocardiographic left ventricular hypertrophy with computer-based ECG data and machine learning
por: De la Garza Salazar, Fernando, et al.
Publicado: (2021) -
Electrocardiographic Criteria for Left Ventricular Hypertrophy in Children
por: Rijnbeek, Peter R., et al.
Publicado: (2008) -
Diagnostic electrocardiographic dyad criteria of emphysema in left ventricular hypertrophy
por: Lanjewar, Swapnil S, et al.
Publicado: (2013) -
Electrocardiographic Left Ventricular Hypertrophy and Outcome in Hemodialysis Patients
por: Kim, Seung Jun, et al.
Publicado: (2012) -
Left ventricular hypertrophy detection using electrocardiographic signal
por: Liu, Cheng-Wei, et al.
Publicado: (2023)