Cargando…
Discriminating malignant and benign clinical T1 renal masses on computed tomography: A pragmatic radiomics and machine learning approach
The aim of this study was to discriminate malignant and benign clinical T1 renal masses on routinely acquired computed tomography (CT) images using radiomics and machine learning techniques. Adult patients undergoing surgical resection and histopathological analysis of clinical T1 renal masses were...
Autores principales: | Uhlig, Johannes, Biggemann, Lorenz, Nietert, Manuel M., Beißbarth, Tim, Lotz, Joachim, Kim, Hyun S., Trojan, Lutz, Uhlig, Annemarie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7220487/ https://www.ncbi.nlm.nih.gov/pubmed/32311963 http://dx.doi.org/10.1097/MD.0000000000019725 |
Ejemplares similares
-
Radiomic Features and Machine Learning for the Discrimination of Renal Tumor Histological Subtypes: A Pragmatic Study Using Clinical-Routine Computed Tomography
por: Uhlig, Johannes, et al.
Publicado: (2020) -
Tumor laterality in renal cancer as a predictor of survival in large patient cohorts: A STROBE compliant study
por: Strauss, Arne, et al.
Publicado: (2019) -
Histogram analysis with computed tomography angiography for discriminating soft tissue sarcoma from benign soft tissue tumor
por: Wu, Gang, et al.
Publicado: (2020) -
T staging with functional and radiomics parameters of computed tomography in colorectal cancer patients
por: Dou, Yafang, et al.
Publicado: (2022) -
CT diagnosis and differentiation of benign and malignant varieties of solitary fibrous tumor of the pleura
por: You, Xiaofang, et al.
Publicado: (2017)