Cargando…
Machine Learning Algorithms for Predicting the Recurrence of Stage IV Colorectal Cancer After Tumor Resection
The aim of this study is to explore the feasibility of using machine learning (ML) technology to predict postoperative recurrence risk among stage IV colorectal cancer patients. Four basic ML algorithms were used for prediction—logistic regression, decision tree, GradientBoosting and lightGBM. The r...
Autores principales: | Xu, Yucan, Ju, Lingsha, Tong, Jianhua, Zhou, Cheng-Mao, Yang, Jian-Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7220939/ https://www.ncbi.nlm.nih.gov/pubmed/32054897 http://dx.doi.org/10.1038/s41598-020-59115-y |
Ejemplares similares
-
Supervised Machine Learning Predictive Analytics For Triple-Negative Breast Cancer Death Outcomes
por: Xu, Yucan, et al.
Publicado: (2019) -
A comparative study of machine learning algorithms for predicting acute kidney injury after liver cancer resection
por: Lei, Lei, et al.
Publicado: (2020) -
Primary Tumor Resection Is Associated with Improved Survival in Stage IV Colorectal Cancer: An Instrumental Variable Analysis
por: Xu, Hong, et al.
Publicado: (2015) -
Primary tumor resection in stage IV unresectable colorectal cancer: what has changed?
por: Pędziwiatr, Michał, et al.
Publicado: (2017) -
Primary tumor resection with or without metastasectomy for left- and right-sided stage IV colorectal cancer: an instrumental variable analysis
por: Yao, Yi-Chen, et al.
Publicado: (2022)