Cargando…
Model-Free Cluster Analysis of Physical Property Data using Information Maximizing Self-Argument Training
We present semi-supervised information maximizing self-argument training (IMSAT), a neural network-based classification method that works without the preparation of labeled data. Semi-supervised IMSAT can amplify specific differences and avoid undesirable misclassification in accordance with the pur...
Autores principales: | Sawada, Ryohto, Iwasaki, Yuma, Ishida, Masahiko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221089/ https://www.ncbi.nlm.nih.gov/pubmed/32404915 http://dx.doi.org/10.1038/s41598-020-64281-0 |
Ejemplares similares
-
Machine-learning guided discovery of a new thermoelectric material
por: Iwasaki, Yuma, et al.
Publicado: (2019) -
Predicting material properties by integrating high-throughput experiments, high-throughput ab-initio calculations, and machine learning
por: Iwasaki, Yuma, et al.
Publicado: (2020) -
A Framework for Argument Retrieval: Ranking Argument Clusters by Frequency and Specificity
por: Dumani, Lorik, et al.
Publicado: (2020) -
The informed argument : a multidisciplinary reader and guide /
Publicado: (1998) -
Arguments for and against HIV self-testing
por: Wood, Brian R, et al.
Publicado: (2014)