Cargando…
Maximum likelihood estimation based on Newton–Raphson iteration for the bivariate random effects model in test accuracy meta-analysis
A bivariate generalised linear mixed model is often used for meta-analysis of test accuracy studies. The model is complex and requires five parameters to be estimated. As there is no closed form for the likelihood function for the model, maximum likelihood estimates for the parameters have to be obt...
Autores principales: | Willis, Brian H, Baragilly, Mohammed, Coomar, Dyuti |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221455/ https://www.ncbi.nlm.nih.gov/pubmed/31184270 http://dx.doi.org/10.1177/0962280219853602 |
Ejemplares similares
-
On estimating a constrained bivariate random effects model for meta-analysis of test accuracy studies
por: Baragilly, Mohammed, et al.
Publicado: (2022) -
Tailored meta-analysis: an investigation of the correlation between the test positive rate and prevalence
por: Willis, Brian H., et al.
Publicado: (2019) -
Comparison of Centor and McIsaac scores in primary care: a meta-analysis over multiple thresholds
por: Willis, Brian H, et al.
Publicado: (2020) -
A fast Newton–Raphson based iterative algorithm for large scale optimal contribution selection
por: Dagnachew, Binyam S., et al.
Publicado: (2016) -
Improving the Accuracy of the Fast Inverse Square Root by Modifying Newton–Raphson Corrections
por: Walczyk, Cezary J., et al.
Publicado: (2021)