Cargando…
Development, Implementation, and Evaluation of a Personalized Machine Learning Algorithm for Clinical Decision Support: Case Study With Shingles Vaccination
BACKGROUND: Although clinical decision support (CDS) alerts are effective reminders of best practices, their effectiveness is blunted by clinicians who fail to respond to an overabundance of inappropriate alerts. An electronic health record (EHR)–integrated machine learning (ML) algorithm is a poten...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221637/ https://www.ncbi.nlm.nih.gov/pubmed/32347813 http://dx.doi.org/10.2196/16848 |
Sumario: | BACKGROUND: Although clinical decision support (CDS) alerts are effective reminders of best practices, their effectiveness is blunted by clinicians who fail to respond to an overabundance of inappropriate alerts. An electronic health record (EHR)–integrated machine learning (ML) algorithm is a potentially powerful tool to increase the signal-to-noise ratio of CDS alerts and positively impact the clinician’s interaction with these alerts in general. OBJECTIVE: This study aimed to describe the development and implementation of an ML-based signal-to-noise optimization system (SmartCDS) to increase the signal of alerts by decreasing the volume of low-value herpes zoster (shingles) vaccination alerts. METHODS: We built and deployed SmartCDS, which builds personalized user activity profiles to suppress shingles vaccination alerts unlikely to yield a clinician’s interaction. We extracted all records of shingles alerts from January 2017 to March 2019 from our EHR system, including 327,737 encounters, 780 providers, and 144,438 patients. RESULTS: During the 6 weeks of pilot deployment, the SmartCDS system suppressed an average of 43.67% (15,425/35,315) potential shingles alerts (appointments) and maintained stable counts of weekly shingles vaccination orders (326.3 with system active vs 331.3 in the control group; P=.38) and weekly user-alert interactions (1118.3 with system active vs 1166.3 in the control group; P=.20). CONCLUSIONS: All key statistics remained stable while the system was turned on. Although the results are promising, the characteristics of the system can be subject to future data shifts, which require automated logging and monitoring. We demonstrated that an automated, ML-based method and data architecture to suppress alerts are feasible without detriment to overall order rates. This work is the first alert suppression ML-based model deployed in practice and serves as foundational work in encounter-level customization of alert display to maximize effectiveness. |
---|