Cargando…

Lead-Free BNT–BT(0.08)/CoFe(2)O(4) Core–Shell Nanostructures with Potential Multifunctional Applications

Herein we report on novel multiferroic core–shell nanostructures of cobalt ferrite (CoFe(2)O(4))–bismuth, sodium titanate doped with barium titanate (BNT–BT(0.08)), prepared by a two–step wet chemical procedure, using the sol–gel technique. The fraction of CoFe(2)O(4) was varied from 1:0.5 to 1:1.5...

Descripción completa

Detalles Bibliográficos
Autores principales: Cernea, Marin, Radu, Roxana, Amorín, Harvey, Greculeasa, Simona Gabriela, Vasile, Bogdan Stefan, Surdu, Vasile Adrian, Ganea, Paul, Trusca, Roxana, Hattab, Marwa, Galassi, Carmen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221815/
https://www.ncbi.nlm.nih.gov/pubmed/32260054
http://dx.doi.org/10.3390/nano10040672
_version_ 1783533448531542016
author Cernea, Marin
Radu, Roxana
Amorín, Harvey
Greculeasa, Simona Gabriela
Vasile, Bogdan Stefan
Surdu, Vasile Adrian
Ganea, Paul
Trusca, Roxana
Hattab, Marwa
Galassi, Carmen
author_facet Cernea, Marin
Radu, Roxana
Amorín, Harvey
Greculeasa, Simona Gabriela
Vasile, Bogdan Stefan
Surdu, Vasile Adrian
Ganea, Paul
Trusca, Roxana
Hattab, Marwa
Galassi, Carmen
author_sort Cernea, Marin
collection PubMed
description Herein we report on novel multiferroic core–shell nanostructures of cobalt ferrite (CoFe(2)O(4))–bismuth, sodium titanate doped with barium titanate (BNT–BT(0.08)), prepared by a two–step wet chemical procedure, using the sol–gel technique. The fraction of CoFe(2)O(4) was varied from 1:0.5 to 1:1.5 = BNT–BT(0.08)/CoFe(2)O(4) (molar ratio). X–ray diffraction confirmed the presence of both the spinel CoFe(2)O(4) and the perovskite Bi(0.5)Na(0.5)TiO(3) phases. Scanning electron microscopy analysis indicated that the diameter of the core–shell nanoparticles was between 15 and 40 nm. Transmission electron microscopy data showed two–phase composite nanostructures consisting of a BNT–BT(0.08) core surrounded by a CoFe(2)O(4) shell with an average thickness of 4–7 nm. Cole-Cole plots reveal the presence of grains and grain boundary effects in the BNT–BT(0.08)/CoFe(2)O(4) composite. Moreover, the values of the dc conductivity were found to increase with the amount of CoFe(2)O(4) semiconductive phase. Both X-ray photoelectron spectroscopy (XPS) and Mössbauer measurements have shown no change in the valence of the Fe(3+), Co(2+), Bi(3+) and Ti(4+) cations. This study provides a detailed insight into the magnetoelectric coupling of the multiferroic BNT–BT(0.08)/CoFe(2)O(4) core–shell composite potentially suitable for magnetoelectric applications.
format Online
Article
Text
id pubmed-7221815
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-72218152020-05-21 Lead-Free BNT–BT(0.08)/CoFe(2)O(4) Core–Shell Nanostructures with Potential Multifunctional Applications Cernea, Marin Radu, Roxana Amorín, Harvey Greculeasa, Simona Gabriela Vasile, Bogdan Stefan Surdu, Vasile Adrian Ganea, Paul Trusca, Roxana Hattab, Marwa Galassi, Carmen Nanomaterials (Basel) Article Herein we report on novel multiferroic core–shell nanostructures of cobalt ferrite (CoFe(2)O(4))–bismuth, sodium titanate doped with barium titanate (BNT–BT(0.08)), prepared by a two–step wet chemical procedure, using the sol–gel technique. The fraction of CoFe(2)O(4) was varied from 1:0.5 to 1:1.5 = BNT–BT(0.08)/CoFe(2)O(4) (molar ratio). X–ray diffraction confirmed the presence of both the spinel CoFe(2)O(4) and the perovskite Bi(0.5)Na(0.5)TiO(3) phases. Scanning electron microscopy analysis indicated that the diameter of the core–shell nanoparticles was between 15 and 40 nm. Transmission electron microscopy data showed two–phase composite nanostructures consisting of a BNT–BT(0.08) core surrounded by a CoFe(2)O(4) shell with an average thickness of 4–7 nm. Cole-Cole plots reveal the presence of grains and grain boundary effects in the BNT–BT(0.08)/CoFe(2)O(4) composite. Moreover, the values of the dc conductivity were found to increase with the amount of CoFe(2)O(4) semiconductive phase. Both X-ray photoelectron spectroscopy (XPS) and Mössbauer measurements have shown no change in the valence of the Fe(3+), Co(2+), Bi(3+) and Ti(4+) cations. This study provides a detailed insight into the magnetoelectric coupling of the multiferroic BNT–BT(0.08)/CoFe(2)O(4) core–shell composite potentially suitable for magnetoelectric applications. MDPI 2020-04-03 /pmc/articles/PMC7221815/ /pubmed/32260054 http://dx.doi.org/10.3390/nano10040672 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Cernea, Marin
Radu, Roxana
Amorín, Harvey
Greculeasa, Simona Gabriela
Vasile, Bogdan Stefan
Surdu, Vasile Adrian
Ganea, Paul
Trusca, Roxana
Hattab, Marwa
Galassi, Carmen
Lead-Free BNT–BT(0.08)/CoFe(2)O(4) Core–Shell Nanostructures with Potential Multifunctional Applications
title Lead-Free BNT–BT(0.08)/CoFe(2)O(4) Core–Shell Nanostructures with Potential Multifunctional Applications
title_full Lead-Free BNT–BT(0.08)/CoFe(2)O(4) Core–Shell Nanostructures with Potential Multifunctional Applications
title_fullStr Lead-Free BNT–BT(0.08)/CoFe(2)O(4) Core–Shell Nanostructures with Potential Multifunctional Applications
title_full_unstemmed Lead-Free BNT–BT(0.08)/CoFe(2)O(4) Core–Shell Nanostructures with Potential Multifunctional Applications
title_short Lead-Free BNT–BT(0.08)/CoFe(2)O(4) Core–Shell Nanostructures with Potential Multifunctional Applications
title_sort lead-free bnt–bt(0.08)/cofe(2)o(4) core–shell nanostructures with potential multifunctional applications
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221815/
https://www.ncbi.nlm.nih.gov/pubmed/32260054
http://dx.doi.org/10.3390/nano10040672
work_keys_str_mv AT cerneamarin leadfreebntbt008cofe2o4coreshellnanostructureswithpotentialmultifunctionalapplications
AT raduroxana leadfreebntbt008cofe2o4coreshellnanostructureswithpotentialmultifunctionalapplications
AT amorinharvey leadfreebntbt008cofe2o4coreshellnanostructureswithpotentialmultifunctionalapplications
AT greculeasasimonagabriela leadfreebntbt008cofe2o4coreshellnanostructureswithpotentialmultifunctionalapplications
AT vasilebogdanstefan leadfreebntbt008cofe2o4coreshellnanostructureswithpotentialmultifunctionalapplications
AT surduvasileadrian leadfreebntbt008cofe2o4coreshellnanostructureswithpotentialmultifunctionalapplications
AT ganeapaul leadfreebntbt008cofe2o4coreshellnanostructureswithpotentialmultifunctionalapplications
AT truscaroxana leadfreebntbt008cofe2o4coreshellnanostructureswithpotentialmultifunctionalapplications
AT hattabmarwa leadfreebntbt008cofe2o4coreshellnanostructureswithpotentialmultifunctionalapplications
AT galassicarmen leadfreebntbt008cofe2o4coreshellnanostructureswithpotentialmultifunctionalapplications