Cargando…

Tunable Thermal Transport Characteristics of Nanocomposites

We present a study of tunable thermal transport characteristics of nanocomposites by employing a combination of a full-scale semi-ab inito approach and a generalised and extended modification of the effective medium theory. Investigations are made for planar superlattices (PSLs) and nanodot superlat...

Descripción completa

Detalles Bibliográficos
Autores principales: Srivastava, G. P., Thomas, Iorwerth O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221877/
https://www.ncbi.nlm.nih.gov/pubmed/32260079
http://dx.doi.org/10.3390/nano10040673
Descripción
Sumario:We present a study of tunable thermal transport characteristics of nanocomposites by employing a combination of a full-scale semi-ab inito approach and a generalised and extended modification of the effective medium theory. Investigations are made for planar superlattices (PSLs) and nanodot superlattices (NDSLs) constructed from isotropic conductivity covalent materials Si and Ge, and NDSLs constructed from anisotropic conductivity covalent-van der Waals materials MoS [Formula: see text] and WS [Formula: see text]. It is found that difference in the conductivities of individual materials, period size, volume fraction of insertion, and atomic-level interface quality are the four main parameters to control phonon transport in nanocomposite structures. It is argued that the relative importance of these parameters is system dependent. The equal-layer thickness Si/Ge PSL shows a minimum in the room temperature conductivity for the period size of around 4 nm, and with a moderate amount of interface mass smudging this value lies below the conductivity of SiGe alloy.