Cargando…
Miniaturized GaAs Nanowire Laser with a Metal Grating Reflector
This work proposed a miniaturized nanowire laser with high end-facet reflection. The high end-facet reflection was realized by integrating an Ag grating between the nanowire and the substrate. Its propagation and reflection properties were calculated using the finite elements method. The simulation...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221942/ https://www.ncbi.nlm.nih.gov/pubmed/32260322 http://dx.doi.org/10.3390/nano10040680 |
Sumario: | This work proposed a miniaturized nanowire laser with high end-facet reflection. The high end-facet reflection was realized by integrating an Ag grating between the nanowire and the substrate. Its propagation and reflection properties were calculated using the finite elements method. The simulation results show that the reflectivity can be as high as 77.6% for a nanowire diameter of 200 nm and a period of 20, which is nearly three times larger than that of the nanowire without a metal grating reflector. For an equal length of nanowire with/without the metal grating reflector, the corresponding threshold gain is approximately a quarter of that of the nanowire without the metal grating reflector. Owing to the high reflection, the length of the nanowire can be reduced to 0.9 μm for the period of 5, resulting in a genuine nanolaser, composed of nanowire, with three dimensions smaller than 1 μm (the diameter is 200 nm). The proposed nanowire laser with a lowered threshold and reduced dimensions would be of great significance in on-chip information systems and networks. |
---|